Inhibitory Effect of Copper on the Growth Rate of Serratia marcescens strain DRY6 on SDS

Authors

  • Farah Hanani Muhamad Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Motharasan Manogaran Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bstr.v10i2.778

Keywords:

Sodium Dodecyl Sulfate, Copper, Serratia marcescens, modified Gompertz model, Wang model

Abstract

The anionic surfactant known as sodium dodecyl sulfate (SDS) or sodium lauryl sulfate (SLS) is found in a wide variety of products designed for cleaning and personal hygiene. Because of the combination of its hydrocarbon tail and its polar "headgroup," the molecule possesses the amphiphilic qualities that make it suitable for use as a detergent. Due to this it is a major pollutant in aquatic bodies. One of the most researched types of cleanup is biodegradation by microorganisms, particularly bacteria. Copper has a profound effect in inhibiting the degradation of SDS by the bacteria Serratia marcescens strain DRY6. Under different copper concentrations, the SDS-degrading bacteria grew in a sigmoidal manner with lag times of 7 to 10 hours. Overall growth was decreased when the concentration of copper was raised, with 1.0 g/L virtually completely stopping bacterial growth. Rates of expansion at various copper concentrations were calculated using a modified Gompertz model. Following the modification of the Gompertz model, the growth rates were modeled using the modified Han-Levenspiel, Wang, Liu, modified Andrews, and the Amor models. Only three of the five models (Wang, modified Han-Levenspiel, and the Liu models) were able to match the curve; the modified Andrews and Amor models did not. As for model fit, the Wang and modified Han-Levenspiel models perform admirably, but the Liu model performs poorly. The Wang model performed best statistically, with the lowest RMSE and AICc values, the greatest adjusted correlation coefficient (adR2), and AF and BF values closest to unity. The Wang model yielded estimates of 0.216 (95% confidence interval: 0.193 to 0.239), 1.05 (95% confidence interval: 0.938 to 1.167), and 0.389 (95% confidence interval: 0.148 to 0.636) for the critical heavy metal ion concentration (g/l), maximum growth rate (g/l h), and empirical constant.

References

Prajapati H, Chauhan P, Gahlout M, Patel B, Patel H. Isolation And Characterization of Detergent Degrading Bacteria From Soil. Int J Adv Res Biol Sci. 2017;4(4):164-8.

Singh S, Gupta VK. Biodegradation And Bioremediation Of Pollutants: Perspectives Strategies And Applications. Int J Pharmacol Bio Sci. 2016;10(1):53-65.

Hashim MA, Hassan RS, Kulandai J. Malaysian studies of recalcitrant detergent wastewater. Effl Water Treat J. 1985;25(11):391-3.

Matthijs E, De Henau H. Determination of LAS: Determination of linear alkylbenzenesulfonates in aqueous samples, sediments, sludges and soils using HPLC. Tenside Deterg. 1987;24(4):193-9.

Vives-Rego J, Vaque MD, Leal JS, Parra J. Surfactants biodegradation in sea water. Tenside Surfactants Deterg. 1987;24(1):20-2.

Ludwig HF, Sekaran AS. Evaluation of use of anionic detergents (ABS) in Malaysia. Water Res. 1988;22(2):257-62.

Okpokwasili GC, Olisa AO. River-water biodegradation of surfactants in liquid detergents and shampoos. Water Res. 1991;25(11):1425-9.

Amund OO, Ilori MO, Odetundun FR. Degradation of Commercial Detergent Products by Microbial Populations of the Lagos Lagoon. Folia Microbiol (Praha). 1997;42(4):353-6.

Junfeng Y, Haowen C, Baoling W, Yongqi L. The anion detergent pollution of Antarctic Maxwell Bay and its adjacent sea areas. China Environ Sci. 1998;18(2):151-3.

Singh KL, Kumar A, Kumar A. Short communication: Bacillus cereus capable of degrading SDS shows growth with a variety of detergents. World J Microbiol Biotechnol. 1998;14(5):777-9.

Pettersson A, Adamsson M, Dave G. Toxicity and detoxification of Swedish detergents and softener products. Chemosphere. 2000;41(10):1611-20.

Ogbulie TE, Ogbulie JN, Umezuruike I. Biodegradation of detergents by aquatic bacterial flora from Otamiri River, Nigeria. Afr J Biotechnol. 2008;7(6):824-30.

Rebello S, Asok AK, Mundayoor S, Jisha MS. Surfactants: Toxicity, remediation and green surfactants. Environ Chem Lett. 2014;12(2):275-87.

Alsalahi MA, Latif MT, Ali MM, Magam SM, Wahid NBA, Khan MF, et al. Distribution of surfactants along the estuarine area of Selangor River , Malaysia. Mar Pollut Bull. 2014;80(1-2):344-50.

Cserháti T, Forgács E, Oros G. Biological activity and environmental impact of anionic surfactants. Environ Int. 2002;28(5):337-48.

Furmanczyk EM, Lipinski L, Dziembowski A, Sobczak A. Genomic and Functional Characterization of Environmental Strains of SDS-Degrading Pseudomonas spp., Providing a Source of New Sulfatases. Front Microbiol. 2018;9:1795.

Icgen B, Salik SB, Goksu L, Ulusoy H, Yilmaz F. Higher alkyl sulfatase activity required by microbial inhabitants to remove anionic surfactants in the contaminated surface waters. Water Sci Technol J Int Assoc Water Pollut Res. 2017 Nov;76(9-10):2357-66.

Yilmaz F, Icgen B. Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. Environ Sci Pollut Res. 2014;21(12):7413-24.

Shahbazi R, Kasra-Kermanshahi R, Gharavi S, Moosavi- Nejad Z, Borzooee F. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity. Iran J Microbiol. 2013;5(2):153-8.

Chaturvedi V, Kumar A. Presence of SDS-degrading enzyme, alkyl sulfatase (SdsA1) is specific to different strains of Pseudomonas aeruginosa. Process Biochem. 2013;48(4):688-93.

Syed M, Mahamood M, Shukor M, Shamaan NA, others. Isolation and characterization of SDS-degrading Pseudomonas aeruginosa sp. strain D1. Aust J Basic Appl Sci. 2010;4(10):5000-11.

George AL. Seasonal factors affecting surfactant biodegradation in Antarctic coastal waters: Comparison of a polluted and pristine site. Mar Environ Res. 2002;53(4):403-15.

Blagojev N, Vasi? V, Kuki? D, Š?iban M, Prodanovi? J, Bera O. Modelling and efficiency evaluation of the continuous biosorption of Cu(II) and Cr(VI) from water by agricultural waste materials. J Environ Manage. 2021 Mar 1;281:111876.

Acosta D da S, Danielle NM, Altenhofen S, Luzardo MD, Costa PG, Bianchini A, et al. Copper at low levels impairs memory of adult zebrafish (Danio rerio) and affects swimming performance of larvae. Comp Biochem Physiol Toxicol Pharmacol CBP. 2016 Aug;185-186:122-30.

Khandare AL, Kumar U, Shankar P, Rao S. Copper ameliorates fluoride toxicity in fluoride and molybdenum fed rabbits. Biomed Environ Sci. 2013;26(4):311-3.

Battogtokh B, Lee JM, Woo N. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia. Environ Earth Sci. 2014;71(8):3363-74.

Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, et al. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol. 2013;58:449-58.

Tuzen M. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem Toxicol. 2009;47(8):1785-90.

Vaz C, Afonso F, Barata M, Ribeiro L, Pousão-Ferreira P, Soares F. Effect of copper exposure and recovery period in reared Diplodus sargus. Ecotoxicology. 2019;28(9):1075-84.

Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, et al. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health. 2019 May 20;

Wang J, Wan W. Kinetic models for fermentative hydrogen production: a review. Int J Hydrog Energy. 2009;34(8):3313-23.

Liu X, Zhu Y, Yang ST. Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog. 2006;22(5):1265-75.

Wang Y, Zhao QB, Mu Y, Yu HQ, Harada H, Li YY. Biohydrogen production with mixed anaerobic cultures in the presence of high-concentration acetate. Int J Hydrog Energy. 2008;33(4):1164-71.

Amor L, Kennes C, Veiga MC. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour Technol. 2001 Jun 1;78(2):181-5.

Andrews JF. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng. 1968 Nov 1;10(6):707-23.

Manogaran M, Othman AR, Shukor MY, Halmi MIE. Modelling the Effect of Heavy Metal on the Growth Rate of an SDS-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. Bioremediation Sci Technol Res. 2019 Jul 31;7(1):41-5.

Rahman MF, Rusnam M, Gusmanizar N, Masdor NA, Lee CH, Shukor MS, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. strain Neni-13. Nova Biotechnol Chim. 2016;15(2):166-81.

Rusnam M, Gusmanizar N. Characterization of the growth on SDS by Enterobacter sp. strain Neni-13. J Biochem Microbiol Biotechnol. 2017 Dec 31;5(2):28-32.

Othman AR, Yusof MT, Shukor MY. Biodegradation of Sodium Dodecyl Sulphate (SDS) by Serratia marcescens strain DRY6. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):9-14.

Masdor N, Abd Shukor MS, Khan A, Bin Halmi MIE, Abdullah SRS, Shamaan NA, et al. Isolation and characterization of a molybdenum-reducing and SDS- degrading Klebsiella oxytoca strain Aft-7 and its bioremediation application in the environment. Biodiversitas. 2015;16(2):238-46.

Shukor MS, Shukor MY. A microplate format for characterizing the growth of molybdenum-reducing bacteria. J Environ Microbiol Toxicol. 2014;2(2):42-4.

Christen P, Vega A, Casalot L, Simon G, Auria R. Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J. 2012;62:56-61.

Basak B, Bhunia B, Dutta S, Chakraborty S, Dey A. Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environ Sci Pollut Res. 2014;21(2):1444-54.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modeling of the growth kinetics of Bacillus sp. on tannery effluent containing chromate. J Environ Bioremediation Toxicol. 2014;2(1):6-10.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian J Plant Biol. 2014;2(1):1-6.

Chaturvedi V, Kumar A. Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergent sodium dodecyl sulfate (SDS). Iran J Microbiol. 2011;3(1):47-53.

John EM, Rebello S, Asok AK, Jisha MS. Pseudomonas plecoglossicida S5, a novel nonpathogenic isolate for sodium dodecyl sulfate degradation. Environ Chem Lett. 2015;13(1):117-23.

Rebello S, Asok AK, Mundayoor S, Jisha MS. Surfactants: Toxicity, remediation and green surfactants. Environ Chem Lett. 2014;12(2):275-87.

Gopinath KP, Kathiravan MN, Srinivasan R, Sankaranarayanan S. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresour Technol. 2011;102(4):3687-93.

Hettiarachchi GM, Pierzynski GM, Ransom MD. In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol. 2000;34(21):4614-9.

Babich H, Stotzky G. Effect of Cadmium on Fungi and on Interactions Between Fungi and Bacteria in Soil: Influence of Clay Minerals and pH. Appl Environ Microbiol. 1977 May;33(5):1059-66.

Kamel Z. Toxicity of cadmium to twoStreptomyces species as affected by clay minerals. Plant Soil. 1986 Jun 1;93(2):195-203.

Downloads

Published

2022-12-31

How to Cite

Muhamad, F. H. ., Manogaran, M., & Yasid, N. A. (2022). Inhibitory Effect of Copper on the Growth Rate of Serratia marcescens strain DRY6 on SDS. Bioremediation Science and Technology Research (e-ISSN 2289-5892), 10(2), 23–28. https://doi.org/10.54987/bstr.v10i2.778

Issue

Section

Articles