Growth on Sodium Dodecyl Sulphate (SDS) by a Bacterial Consortium Isolated from Volcanic Soil

Authors

  • . Rusnam Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • S Syafrawati Public Health Sciences Study Program, Faculty of Public Health, Andalas University, Padang, 25163, Indonesia.
  • Mohd Fadhil Rahman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Fachri Ibrahim Nasution Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • Mohd Ezuan Khayay Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bstr.v10i2.776

Keywords:

Sodium Dodecyl Sulfate, SDS-degrading, Bacterial consortium, Mathematical model, Haldane

Abstract

During biodegradation, microorganisms can directly metabolize surfactants for energy and nutrients or co-metabolize them with other compounds. Maximum growth of the bacterial consortium on SDS was seen between 30 and 35 °C, while the optimal pH range for bacterial consortium growth was between 6.5 and 7.5. As for the nitrogen source, 2 g/L of ammonium sulfate was optimum in supporting the growth of SDS. The greatest growth rate of the bacterial consortium was recorded at a concentration of between 1 and 1.5 g/L of SDS (p<0.05). At 2–3, g/L of SDS, the bacterial consortium grew more slowly, and at 5 g/L, growth was severely inhibited. Almost complete degradations of SDS were observed in 3, 5 and 6 days at 0.5, 0.75 and 1 g/L SDS, respectively while higher concentrations showed partial degradation with no degradation observed at 2.5 g/L SDS after 6 days of incubation. In this study, the maximum growth rate, or max, Ks, and Ki were 0.517 h-1 (95% confidence interval of C.I. from 0.404 to 0.629), 0.132 (g/L) (95% C.I. from 0.073 to 0.191) and 0.909 (g/L) (95% C.I. from 0.544 to 1.273), respectively. Heavy metals like mercury, copper, and chromium can severely stunt growth if they are present in the environment. It was discovered through research into growth kinetics that Haldane substrate inhibition kinetics may be used to model the growth rate. This bacterial consortium has the right properties for the bioremediation of SDS-polluted environments.

References

Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J. Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere. 2005 Mar;58(9):1249-53.

Chukwu LO, Odunzeh CC. Relative toxicity of spent lubricant oil and detergent against benthic macro-invertebrates of a west African estuarine lagoon. J Environ Biol. 2006 Jul;27(3):479-84.

Kumar M, Trivedi SP, Misra A, Sharma S. Histopathological changes in testis of the freshwater fish, Heteropneustes fossilis (Bloch) exposed to linear alkyl benzene sulphonate (LAS). J Environ Biol. 2007 Jul;28(3):679-84.

Pettersson A, Adamsson M, Dave G. Toxicity and detoxification of Swedish detergents and softener products. Chemosphere. 2000;41(10):1611-20.

Cserháti T, Forgács E, Oros G. Biological activity and environmental impact of anionic surfactants. Environ Int. 2002;28(5):337-48.

Rosety M, Ribelles A, Rosety-Rodriguez M, Carrasco C, Ordonez FJ, Rosety JM, et al. Morpho-histochemical study of the biological effects of sodium dodecyl sulphate on the digestive gland of the Portuguese oyster. Histol Histopathol. 2000;15(4):1137-43.

Najim AA, Ismail ZZ, Hummadi KK. Biodegradation potential of sodium dodecyl sulphate (SDS) by mixed cells in domestic and non-domestic actual wastewaters: Experimental and kinetic studies. Biochem Eng J. 2022 Mar 1;180:108374.

Masdor N, Abd Shukor MS, Khan A, Bin Halmi MIE, Abdullah SRS, Shamaan NA, et al. Isolation and characterization of a molybdenum-reducing and SDS- degrading Klebsiella oxytoca strain Aft-7 and its bioremediation application in the environment. Biodiversitas. 2015;16(2):238-46.

Shukor MS, Masdor NA, Shamaan NA, Ahmad SA, Halmi MIE, Shukor MY. Modelling the growth of Moraxella sp. B on monobromoacetic acid (MBA). Bull Environ Sci Manag. 2015;3(1):1-6.

Payne WJ, Feisal VE. Bacterial utilization of dodecyl sulfate and dodecyl benzene sulfonate. Appl Microbiol. 1963;11:339-44.

Roig MG, Pedraz MA, Sanchez JM, Huska J, Tóth D. Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria: II. Comamonas terrigena N3H. J Mol Catal - B Enzym. 1998 Aug 3;4(5-6):271-81.

Schulz S, Dong W, Groth U, Cook AM. Enantiomeric degradation of 2-(4-sulfophenyl)butyrate via 4- sulfocatechol in Delftia acidovorans SPB1. Appl Environ Microbiol. 2000 May;66(5):1905-10.

Dhouib A, Hamad N, Hassaïri I, Sayadi S. Degradation of anionic surfactants by Citrobacter braakii. Process Biochem. 2003 Mar 28;38(8):1245-50.

Othman AR, Yusof MT, Shukor MY. Biodegradation of Sodium Dodecyl Sulphate (SDS) by Serratia marcescens strain DRY6. Bioremediation Sci Technol Res. 2019 Dec 28;7(2):9-14.

Chishti Z, Arshad M. Growth linked biodegradation of chlorpyrifos by Agrobacterium and Enterobacter spp. Int J Agric Biol. 2012;15:19-26.

Yunus SM, Hamim HM, Anas OM, Aripin SN, Arif SM. Mo (VI) reduction to molybdenum blue by Serratia marcescens strain Dr.Y9. Pol J Microbiol. 2009;58(2):141-7.

Rusnam, Gusmanizar N. An Acrylamide-degrading Bacterial Consortium Isolated from Volcanic Soil. J Biochem Microbiol Biotechnol. 2021 Dec 31;9(2):19-24.

Hayashi K. A rapid determination of sodium dodecyl sulfate with methylene blue. Anal Biochem. 1975;67(2):503-6.

Monod J. The Growth of Bacterial Cultures. Annu Rev Microbiol. 1949 Oct;3(1):371-94.

Haldane JBS. Enzymes. London: Longmans, Green and Company; 1930. 244 p.

Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complement Altern Med. 2015 Feb 5;15:11.

Chaturvedi V, Kumar A. Isolation of sodium dodecyl sulfate degrading strains from a detergent polluted pond situated in Varanasi city, India. J Cell Mol Biol. 2010;8(2): 103-111.

Mulligan CN, Yong RN, Gibbs BF. Surfactant-enhanced remediation of contaminated soil: A review. Eng Geol. 2001 Jun;60(1-4):371-80.

Zeng G, Fu H, Zhong H, Yuan X, Fu M, Wang W, et al. Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and Rhamnolipid, in liquid culture media and compost matrix. Biodegradation. 2007 Jun;18(3):303-10.

Syed M, Mahamood M, Shukor M, Shamaan NA, others. Isolation and characterization of SDS-degrading Pseudomonas aeruginosa sp. strain D1. Aust J Basic Appl Sci. 2010;4(10):5000-11.

Chaturvedi V, Kumar A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int Biodeterior Biodegrad. 2011;65(7):961-71.

Ambily PS, Jisha MS. Biodegradation of anionic surfactant, sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311. J Environ Biol. 2012;33(4):717-20.

Ambily PS, Jisha MS. Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311). J Environ Biol. 2014;35(5):827-31.

Usharani J, Rajasekar T, Deivasigamani B. Isolation and characterizatiosn of SDS (Sodium Dodecyl Sulfate) degrading organisms from SDS contaminated areas. Sci Rep. 2012;1:148.

Shahbazi R, Kasra-Kermanshahi R, Gharavi S, Moosavi- Nejad Z, Borzooee F. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity. Iran J Microbiol. 2013;5(2):153-8.

Venkatesh C. A plate assay method for isolation of bacteria having potent Sodium Doedecyl Sulfate (SDS) degrading ability. Res J Biotechnol. 2013;8(2):27-31.

Yilmaz F, Icgen B. Characterization of SDS-degrading Delftia acidovorans and in situ monitoring of its temporal succession in SDS-contaminated surface waters. Environ Sci Pollut Res. 2014;21(12):7413-24.

Rahman MF, Rusnam M, Gusmanizar N, Masdor NA, Lee CH, Shukor MS, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. Strain Neni-13. Nova Biotechnol Chim. 2016 Dec 1;15(2):166-81.

Icgen B, Salik SB, Goksu L, Ulusoy H, Yilmaz F. Higher alkyl sulfatase activity required by microbial inhabitants to remove anionic surfactants in the contaminated surface waters. Water Sci Technol J Int Assoc Water Pollut Res. 2017 Nov;76(9-10):2357-66.

Furmanczyk EM, Lipinski L, Dziembowski A, Sobczak A. Genomic and Functional Characterization of Environmental Strains of SDS-Degrading Pseudomonas spp., Providing a Source of New Sulfatases. Front Microbiol. 2018;9:1795.

Abboud MM, Khleifat KM, Batarseh M, Tarawneh KA, Al-Mustafa A, Al-Madadhah M. Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzyme Microb Technol. 2007 Sep 3;41(4):432-9.

Hosseini F, Malekzadeh F, Amirmozafari N, Ghaemi N. Biodegradation of anionic surfactants by isolated bacteria from activated sludge. Int J Environ Sci Technol. 2007;4(1):127-32.

Shukor MY, Husin WSW, Rahman MFA, Shamaan NA, Syed MA. Isolation and characterization of an SDS-degrading Klebsiella oxytoca. J Environ Biol. 2009 Jan;30(1):129-34.

Khleifat KM. Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem. 2006 Sep;41(9):2010-6.

Khleifat KM, Halasah RA, Tarawneh KA, Halasah Zina, Shawabkeh Reyad, Wedyan MA. Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. Int J Agric Biol Agric Biol. 2010;12:17-25.

Margesin R, Schinner F. Biodegradation of the anionic surfactant sodium dodecyl sulfate at low temperatures. Int Biodeterior Biodegrad. 1998 Mar;41(2):139-43.

Davey KR. Modelling the combined effect of temperature and pH on the rate coefficient for bacterial growth. Int J Food Microbiol. 1994;23(3-4):295-303.

Booth IR. Regulation of cytoplasmic pH in bacteria. Vol. 49, Microbiological Reviews. 1985. p. 359-78.

Fritsche W, Hofrichter M. Aerobic Degradation by Microorganisms. In: Biotechnology. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2008. p. 144-67.

Odahara T. Stability and solubility of integral membrane proteins from photosynthetic bacteria solubilized in different detergents. Biochim Biophys Acta - Biomembr. 2004 Jan 28;1660(1-2):80-92.

Patoczka J, Pulliam GW. Biodegradation and secondary effluent toxicity of ethoxylated surfactants. Water Res. 1990;24(8):965-72.

Hashim MA, Kulandai J, Hassan RS. Biodegradability of branched alkylbenzene sulphonates. J Chem Technol Biotechnol. 2007 Apr 24;54(3):207-14.

Perales JA, Manzano MA, Sales D, Quiroga JM. Linear alkylbenzene sulphonates: Biodegradability and isomeric composition. Bull Environ Contam Toxicol. 1999;63(1):94-100.

Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R. Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol. 2005 May;50(5):233-7.

Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. Vol. 35, FEMS Microbiology Reviews. 2011. p. 299-323.

Rathnayake IVN, Megharaj M, Bolan N, Naidu R. Tolerance of Heavy Metals by Gram Positive Soil Bacteria. Int J Bioeng Life Sci. 2009;3(5):270-4.

Downloads

Published

2022-12-31

How to Cite

Rusnam, ., Syafrawati, S., Rahman, M. F., Nasution, F. I., & Khayay, M. E. (2022). Growth on Sodium Dodecyl Sulphate (SDS) by a Bacterial Consortium Isolated from Volcanic Soil. Bioremediation Science and Technology Research (e-ISSN 2289-5892), 10(2), 8–14. https://doi.org/10.54987/bstr.v10i2.776

Issue

Section

Articles