Yeast Inhibitive Assay for Anionic Heavy Metals: A review

Authors

  • Farah Najieha Mohd Sadli Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Masyitah Husna Ammer Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bstr.v10i1.686

Keywords:

Biomonitoring, Saccharomyces cerevisiae, Cationic heavy metals, Bioassay, MTT assay

Abstract

One of the most common types of pollution that has a negative impact on the biotic community in aquatic habitats is heavy metal poisoning of the water. Both essential and non-essential heavy metals can be toxic to living things if their concentrations are too high for their bioavailability. Although the toxicity of heavy metals, and especially anionic metal ions, is better known than that of cationic metal ions, it is just as toxic, if not more so. The focus of this review is on the usefulness of eukaryotic organisms like yeast, Saccharomyces cerevisiae, for toxicity assessment because they can be easily maintained and developed in controlled circumstances, thereby avoiding variability issues that arise when employing more complex organisms. Recent research has shown that the majority of cellular MTT reduction occurs outside of the mitochondrial inner membrane, and that this reduction is dependent on NADH and NADPH but is resistant to respiratory chain inhibitors.

References

Abdollahi H, Fekri M, Mahmodabadi M. Effect of heavy metals pollution on pistachio trees. Int J Agric Biol. 2011;13(4):599-602.

Hamdy A, Mostafa MK, Nasr M. Techno-economic estimation of electroplating wastewater treatment using zero-valent iron nanoparticles: batch optimization, continuous feed, and scaling up studies. Environ Sci Pollut Res. 2019 Aug 1;26(24):25372-85.

Martín-González A, Díaz S, Borniquel S, Gallego A, Gutiérrez JC. Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol. 2006;157(2):108-18.

ELTurk M, Abdullah R, Mohamad Zakaria R, Abu Bakar NK. Heavy metal contamination in mangrove sediments in Klang estuary, Malaysia: Implication of risk assessment. Estuar Coast Shelf Sci. 2019 Oct 15;226:106266.

Ahmad Abdul Ghani NA, Nadia H. Water Quality Status and Heavy Metal Contains in Selected Rivers at Tasik Chini due to Increasing Land Use Activities. IOP Conf Ser Mater Sci Eng. 2020 Jan 3;712:012022.

Elias M, Ibrahim S, Samudin K, Kantasamy N, Rahman S, Hashim A. Rare earth elements (REEs) as pollution indicator in sediment of Linggi River, Malaysia. Appl Radiat Isot. 2019 May 1;151.

DOE. Malaysia Environmental Quality Report 2014. Department of Environment, Ministry of Natural Resources and Environment, Malaysia; 2015.

Oremland RS a, Stolz JF b. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 2005;13(2):45-9.

Soda SO, Yamamura S, Zhou H, Ike M, Fujita M. Reduction kinetics of As (V) to As (III) by a dissimilatory arsenate-reducing bacterium, Bacillus sp. SF-1. Biotechnol Bioeng. 2006;93(4):812-5.

Yang HC, Fu HL, Lin YF, Rosen BP. Pathways of Arsenic Uptake and Efflux. Curr Top Membr. 2012;69:325-58.

Spiegelstein O, Gould A, Wlodarczyk B, Tsie M, Lu X, Le C, et al. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies. Toxicol Appl Pharmacol. 2005;203(1):18-26.

Leiva ED a, Rámila CD a, Vargas IT a, Escauriaza CR a, Bonilla CA a, Pizarro GE a, et al. Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Sci Total Environ. 2014;466-467:490-502.

Sharma I. Arsenic induced oxidative stress in plants. Biologia (Bratisl). 2012;67(3):447-53.

Zou XY, Xu B, Yu CP, Zhang HW. Combined toxicity of ferroferric oxide nanoparticles and arsenic to the ciliated protozoa Tetrahymena Pyriformis. Aquat Toxicol. 2013;134-135:66-73.

Kanel SR, Manning B, Charlet L, Choi H. Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol. 2005;39(5):1291-8.

Nickson R, McArthur J, Burgess W, Matin Ahmed K, Ravenscroft P, Rahman M. Arsenic poisoning of Bangladesh groundwater [7]. Nature. 1998;395(6700):338.

Mondal P a, Bhowmick S b c, Chatterjee D c, Figoli A d, Van der Bruggen B a. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere. 2013;92(2):157-70.

Mahimairaja S a, Bolan NS a, Adriano DC b, Robinson B c. Arsenic Contamination and its Risk Management in Complex Environmental Settings. Adv Agron. 2005;86:1-82.

Saalfield SL, Bostick BC. Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite. Geochim Cosmochim Acta. 2010;74(18):5171-86.

Vink JPM, van Zomeren A, Dijkstra JJ, Comans RNJ. When soils become sediments: Large-scale storage of soils in sandpits and lakes and the impact of reduction kinetics on heavy metals and arsenic release to groundwater. Environ Pollut. 2017;227:146-56.

Liao VHC, Chu YJ, Su YC a, Hsiao SY, Wei CC, Liu CW, et al. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol. 2011;123(1-2):20-9.

Burton ED, Johnston SG, Planer-Friedrich B. Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid. Chem Geol. 2013;343:12-24.

Brusseau ML, Artiola JF. Chemical Contaminants. Environ Pollut Sci. 2019 Jan 1;175-90.

Sodhi KK, Kumar M, Agrawal PK, Singh DK. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ Technol Innov [Internet]. 2019;16. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072572786&doi=10.1016%2fj.eti.2019.100462&partnerID=40&md5=f7d654a04465e5404f13e0c2effd697b

Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391-6.

Nakahara H, Yanokura M, Murakami Y. Environmental effects of geothermal waste water on the near-by river system. J Radioanal Chem. 1978;45(1):25-36.

Mandal NK, Biswas R. A study on arsenical dermatosis in rural community of West Bengal. Indian J Public Health. 2004;48(1):30-3.

Yunus K, Zuraidah MA, John A. A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia. Ecofeminism Clim Change. 2020 Jan 1;1(1):21-35.

Sakai N, Yoneda M. Potential Health Risk of Heavy Metals in Malaysia. In: Yoneda M, Mokhtar M, editors. Environmental Risk Analysis for Asian-Oriented, Risk-Based Watershed Management: Japan and Malaysia [Internet]. Singapore: Springer; 2018 [cited 2022 Jul 21]. p. 19-32. Available from: https://doi.org/10.1007/978-981-10-8090-6_2

Lee JD. Concise Inorganic Chemistry. Van Reinhold Co., New York; 1977.

Park D, Lim SR, Yun YS, Park JM. Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresour Technol. 2008 Dec 1;99(18):8810-8.

Yu XZ, Gu JD, Huang SZ. Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology. 2007;16(3):299-309.

Ková?ik J, Babula P, Hedbavny J, Kryštofová O, Provaznik I. Physiology and methodology of chromium toxicity using alga Scenedesmus quadricauda as model object. Chemosphere. 2015;120:23-30.

Kang C, Wu P, Li Y, Ruan B, Zhu N, Dang Z. Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium(VI) toxicity and environmental parameters optimization. World J Microbiol Biotechnol. 2014;

Sharmila S, Rebecca Jeyanthi L, Saduzzaman M. Biodegradation of tannery effluent using Prosopis juliflora. Int J ChemTech Res. 2013;5(5):2186-92.

Nag S, Mondal A, Bar N, Das SK. Biosorption of chromium (VI) from aqueous solutions and ANN modelling. Environ Sci Pollut Res. 2017 Aug 1;24(23):18817-35.

Kubrak OI, Lushchak OV, Lushchak JV, Torous IM, Storey JM, Storey KB, et al. Chromium effects on free radical processes in goldfish tissues: Comparison of Cr(III) and Cr(VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Physiol - C Toxicol Pharmacol. 2010;152(3):360-70.

Sangwan P, Kumar V, Joshi UN. Effect of chromium(VI) toxicity on enzymes of nitrogen metabolism in clusterbean (Cyamopsis tetragonoloba L.). Enzyme Res. 2014;2014:784036.

Ward GM. Molybdenum toxicity and hypocuprosis in ruminants: a review. J Anim Sci. 1978;46(4):1078-85.

Abbasi SA. Toxicity of molybdenum and its trace analysis in animal tissues and plants. Int J Environ Anal Chem. 1981;10(3-4):305-8.

Huang YH, Tang C, Zeng H. Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(II) treatment system. Chem Eng J. 2012 Aug 15;200-202:257-63.

Xiong Y, Chen C, Gu X, Biswas BK, Shan W, Lou Z, et al. Investigation on the removal of Mo(VI) from Mo-Re containing wastewater by chemically modified persimmon residua. Bioresour Technol. 2011 Jul 1;102(13):6857-62.

Jay Murray F, Tyl RW, Sullivan FM, Tiwary AK, Carey S. Developmental toxicity study of sodium molybdate dihydrate administered in the diet to Sprague Dawley rats. Reprod Toxicol. 2014 Nov 1;49:202-8.

Wang CW, Liang C, Yeh HJ. Aquatic acute toxicity assessments of molybdenum (+VI) to Daphnia magna. Chemosphere. 2016 Mar 1;147:82-7.

Yakasai HM, Rahman MF, Yasid NA, Ahmad SA, Halmi MIE, Shukor MY. Elevated Molybdenum Concentrations in Soils Contaminated with Spent Oil Lubricant. J Environ Microbiol Toxicol. 2017;5(2):1-3.

Neunhäuserer C, Berreck M, Insam H. Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut. 2001;128(1-2):85-96.

Pandey R, Singh SP. Effects of molybdenum on fertility of male rats. BioMetals. 2002;15(1):65-72.

Sachdeva S, Maret W. Comparative outcomes of exposing human liver and kidney cell lines to tungstate and molybdate. https://doi.org/101080/1537651620211956031. 2021;31(9):690-8.

Assasa MF, Farahat MMI. Toxic effect of potassium dichromate on sex hormones and possible protective effect of rice bran oil in female albino rats. J Pharmacol Toxicol. 2014;9(2):90-6.

Navya K, Phani Kumar G, Chandrasekhar Y, Kr A. Evaluation of Potassium Dichromate (K2Cr2O7)-Induced Liver Oxidative Stress and Ameliorative Effect of Picrorhiza kurroa Extract in Wistar Albino Rats. Biol Trace Elem Res. 2018 Jul 1;184(1):154-64.

Dashti A, Soodi M, Amani N. Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid. Environ Toxicol. 2016 Mar 1;31(3):269-77.

Li Z, Liu Y, Wang F, Gao Z, Elhefny MA, Habotta OA, et al. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chem Biol Interact. 2021 Mar 1;337:109392.

Najafi S, Hashemzaei M, Sadeghi M, Seyed Mousavi S, Bazi A, Fanoudi S, et al. The Protective Effects of Nicotine and Bucladesine on Impaired Avoidance Memory Caused by Sodium Arsenate Toxicity in Mice. Iran J Toxicol. 2021;15(2):99-108.

Morais S, Garcia E Costa F, De M, Pereira L. Heavy Metals and Human Health. Environ Health - Emerg Issues Pract. 2012 Feb 3;

Halmi MIE. Rapid Ecotoxicological Tests Using Bioassay Systems-A Review. Vol. 4, JOBIMB. 2016 Jul.

Attar H, Afshar S. Design of Sensible Biosensor for Rapid Detection of Biocides in Potable Water. Asian J Biotechnol. 2010 Mar 15;2(2):120-6.

Knight AW, Keenan PO, Goddard NJ, Fielden PR, Walmsley RM. A yeast-based cytotoxicity and genotoxicity assay for environmental monitoring using novel portable instrumentation. J Environ Monit. 2004 Jan;6(1):71-9.

Isa HWM, Mustafa M, Wan Johari WL, Syahir A, Shukor MY, Nor Azwady AA, et al. Development of a Bacterial-based Tetrazolium Dye (MTT) Assay for Monitoring of Heavy Metals. Artic Int J Agric Biol. 2014;16:1123-8.

Halmi MIE, Ahmad F, Hashim AK, Shamaan NA, Syed MA, Shukor MY. Effect of bacterial growth period on the sensitivity of the MTT assay for silver. J Environ Biol. 2014;35(2):353-5.

Diamantino TC, Guilhermino L, Almeida E, Soares AMVM. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests. Ecotoxicol Environ Saf. 2000;45(3):253-9.

Rodriguez BB, Bolbot JA, Tothill IE. Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron. 2004 May 15;19(10):1157-67.

Kassim A, Halmi MIE, Gani SSA, Zaidan UH, Othman R, Mahmud K, et al. Bioluminescent method for the rapid screening of toxic heayy metals in environmental samples using Photobacterium leiognathi strain AK-MIE. Ecotoxicol Environ Saf. 2020 Jun 15;196:110527.

Sirisattha S, Momose Y, Kitagawa E, Iwahashi H. Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res. 2004;38(1):61-70.

Dolezalova J, Rumlova L. A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test. Environ Toxicol Pharmacol. 2014 Nov 1;38(3):977-81.

Gutiérrez JC, Amaro F, Martín-González A. Heavy metal whole-cell biosensors using eukaryotic microorganisms: An updated critical review. Front Microbiol. 2015;6(FEB).

Bitton G, Koopman B, Wang HD. Baker's yeast assay procedure for testing heavy metal toxicity. Bull Env Contam Toxicol U S. 1984 Jan 1;32:1(1):80-4.

Gil FN, Moreira-Santos M, Chelinho S, Pereira C, Feliciano JR, Leitão JH, et al. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: Comparison with standard aquatic and soil toxicity assays. Sci Total Environ. 2015 Feb 1;505:161-71.

Daniel M, Sharpe A, Driver J, Knight AW, Keenan PO, Walmsley MM, et al. Results of a technology demonstration project to compare rapid aquatic toxicity screening tests in the analysis of industrial effluents. J Environ Monit. 2004 Nov 8;6(11):855-65.

Fai PB, Grant A. A rapid resazurin bioassay for assessing the toxicity of fungicides. Chemosphere. 2009 Mar 1;74(9):1165-70.

Codina JC, Perez-Garcia A, Vicente AD. Detection of Heavy Metal Toxicity and Genotoxicity in Wastewaters by Microbial Assay. Water Sci Technol. 1994;30(10):145-51.

Gomes LH, Duarte KMR, Kamogawa MY, Ferrarezi JA, Andrino FG, Tavares ACLB, et al. YTOX: a rapid toxicity test based on the dehydrogenase activity of Saccharomyces cerevisiae for detection of contaminants in water samples. J Microbiol Methods. 2019 Jun 1;161:43-6.

Gong L, Yang G, Yang B, Gu J. Development of the yeast Saccharomyces cerevisiae as a biosensor for the toxicity detection of toxic substances. bioRxiv. 2020;1-18.

Botsford JL. A simple, rapid, inexpensive assay for toxic chemicals using a bacterial indicator. Stud Environ Sci. 1997 Jan 1;66(C):429-43.

Hayon T, Dvilansky A, Shpilberg O, Nathan I. Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia. Leuk Lymphoma. 2003 Nov;44(11):1957-62.

Rumlova L, Dolezalova J. A new biological test utilising the yeast Saccharomyces cerevisiae for the rapid detection of toxic substances in water. Environ Toxicol Pharmacol. 2012 May 1;33(3):459-64.

Sánchez NS, Königsberg M. Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem Mol Biol Educ. 2006 May;34(3):209-12.

Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays. Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.

Ahmad F, Halmi MIE, Baskaran G, Johari WLW, Shukor MY, Syed MA. Inhibitive bacterial MTT assay for river monitoring of heavy metals. Bioremediation Sci Technol Res. 2013;1(1):1-7.

Saha SP, Mazumdar D. Optimization of process parameter for alpha-amylase produced by Bacillus cereus amy3 using one factor at a time (OFAT) and central composite rotatable (CCRD) design based response surface methodology (RSM). Biocatal Agric Biotechnol. 2019 May 1;19:101168.

Akbari S, Mahmood SM, Tan IM, Adeyemi BJ. Evaluation of One Factor at A Time (OFAT) technique in viscosity modeling of polymer solution. J Eng Appl Sci. 2017 Dec 31;12(17):4313-9.

Aziz NF, Halmi MIE, Wan Johari WL. Statistical optimization of hexavalent molybdenum reduction by Serratia sp. strain MIE2 using Central Composite Design (CCD). J Biochem Microbiol Biotechnol. 2017;5(2):8-11.

Oh SO, Yun A, Park DH. Effects of physicochemically hydrolyzed human hairs on the soil microbial community and growth of the hot pepper plant. Biotechnol Bioprocess Eng. 2011 Aug;16(4):746-54.

Sharifi S, Nabizadeh R, Akbarpour B, Azari A, Ghaffari HR, Nazmara S, et al. Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies. J Environ Health Sci Eng. 2019 Dec 1;17(2):873-88.

Anwar F, Hussain S, Ramzan S, Hafeez F, Arshad M, Imran M, et al. Characterization of Reactive Red-120 Decolorizing Bacterial Strain Acinetobacter junii FA10 Capable of Simultaneous Removal of Azo Dyes and Hexavalent Chromium. Water Air Soil Pollut. 2014 Jul 2;225(8):2017.

Folorunsho AT, Abel UA, Promise EU. A Statistical Approach to Optimization of Congo Red Dye Removal (CRDR) Via Coconut Shell Activated Carbon (CSAC). Int J Comput Theor Chem. 2016 Dec 22;4(2):7.

Conde-Gutiérrez RA, Colorado D, Hernández-Bautista SL. Comparison of an artificial neural network and Gompertz model for predicting the dynamics of deaths from COVID-19 in México. Nonlinear Dyn. 2021;

Schio RR, Salau NPG, Mallmann ES, Dotto GL. Modeling of fixed-bed dye adsorption using response surface methodology and artificial neural network. Chem Eng Commun. 2020 Apr 15;0(0):1-12.

Chakraborty S, Chowdhury S, Saha PD. Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technol Environ Policy. 2013 Apr 1;15(2):255-64.

Downloads

Published

2022-07-31

How to Cite

Sadli, F. N. M., Ammer, M. H. ., & Shukor, M. Y. (2022). Yeast Inhibitive Assay for Anionic Heavy Metals: A review. Bioremediation Science and Technology Research, 10(1), 30–36. https://doi.org/10.54987/bstr.v10i1.686

Issue

Section

Articles