Characterization of a molybdenum-reducing Acinetobacter baumannii strain Serdang 1 with the capacity to grow on phenol and acrylamide
DOI:
https://doi.org/10.54987/bstr.v4i2.371Keywords:
Acinetobacter baumannii; Molybdenum; molybdenum blue; phenol-degrading; acrylamide-degradingAbstract
Contamination of organic xenobiotic pollutants and heavy metals in a contaminated site allows the use of multiple bacterial degraders or bacteria with the ability to detoxify numerous toxicants at the same time. A previously isolated SDS- degrading bacterium, Acinetobacter baumannii strain Serdang 1 was shown to reduce molybdenum to molybdenum-blue. The bacterium works optimally at pH 6.5, the temperature range between 25 and 34°C with glucose serves as the best electron donor for molybdate reduction. This bacterium required additional concentration of phosphate at 5.0 mM and molybdate between 15 and 25 mM. The absorption spectrum of the molybdenum blue obtained is similar to the molybdenum blue from other earlier reported molybdate reducing bacteria, as it resembles a reduced phosphomolybdate closely. Ag(i), As(v), Pb(ii) and Cu(ii) inhibited molybdenum reduction by 57.3, 36.8, 27.7 and 10.9%, respectively, at 1 p.p.m. Acrylamide was efficiently shown to support molybdenum reduction at a lower efficiency than glucose. Phenol, acrylamide and propionamide could support the growth of this bacterium independently of molybdenum reduction. This bacterium capability to detoxify several toxicants is an important tool for bioremediation in the tropical region
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).