Kinetic studies of the partially purified molybdenum-reducing enzyme from Bacillus pumilus strain lbna
DOI:
https://doi.org/10.54987/bstr.v5i1.354Keywords:
molybdenum; Mo-reducing bacterium; Bacillus pumilus; Mo-reducing enzyme; Characterization;Abstract
Bacterial based remediation of environmental toxicants is a promising innovative technology for molybdenum pollution. To date, the enzyme responsible for molybdate reduction to Mo-blue from bacteria show that the Michaelis-Menten constants varies by one order of magnitude. It is important that the constants from newer enzyme sources be characterized so that a comparison can be made. The aim of this study is to characterize kinetically the enzyme from a previously isolated Mo-reducing bacterium; Bacillus pumilus strain Lbna. The maximum activity of this enzyme occurred at pH 5.5 and in between 25 and 35 oC. The Km and Vmax of NADH were 6.646 mM and 0.057 unit/mg enzyme, while the Km and Vmax of LPPM were 3.399 mM and 0.106 unit/mg enzyme. The results showed that the enzyme activity for Bacillus pumilus strain Lbna were inhibited by all heavy metals used. Zinc, copper, silver, chromium, cadmium and mercury all caused more than 50% inhibition to the Mo-reducing enzyme activity with copper being the most potent with an almost complete inhibition of enzyme activity observed.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).