Observation of the bile canaliculi of <i>Puntius javanicus</i> liver affected by copper

Authors

  • Mohd Khalizan Sabullah Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.
  • Azlan Jualang Gansau Faculty of Applied Sciences, UCSI University Kuala Lumpur, No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia.
  • Baskaran Gunasekaran Faculty of Applied Sciences, UCSI University Kuala Lumpur, No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia.
  • Nor Aripin Shamaan Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 13th Floor, Menara B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, 55100 Kuala Lumpur, Malaysia.
  • Mohd Rosni Sulaiman Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.

DOI:

https://doi.org/10.54987/bstr.v3i2.298

Keywords:

Puntius javanicus, copper, bile canaliculi, Transmission Electron Microscopy, Ultrastructure

Abstract

Investigation on in vivo effects of copper (Cu) on the ultrastructure of P. Javanicus  liver was carried out using transmission electron microscopy (TEM). The addition of sublethal concentration of 5 mg/L of Cu caused abnormalities on the bile canaliculi (BC) including dilation and elongation compared to control and at lower concentrations of copper with a normal round shape form. Findings from this study support an alternative histological assessment of the effects of Cu concentration on P. Javanicus liver.

References

Sabullah MK, Ahmad SA, Shukor MY, Gansau AJ, Syed MA, Sulaiman MR, Shamaan NA. Heavy metal biomarker: Fish behavior, cellular alteration, enzymatic reaction and proteomics approaches. Int Food Res J. 2015;22(2):435-54.

Wei Y, Zhu N, Lavoie M, Wang J, Qian H, Fu Z. Copper toxicity to Phaeodactylum tricornutum: a survey of the sensitivity of various toxicity endpoints at the physiological, biochemical, molecular and structural levels. Biometals. 2014;27(3):527-37.

Islam E, Yang X, He Z, Mahmood Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B. 2007;8(1): 1–13.

Nica DV, Bura M, Gergen I, Harmanescu M, Bordean D. Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chem Central J. 2012;6:55.

Sabullah MK., Shukor MY, Sulaiman MR, Shamaan NA, Syed MA, Khalid A, Ahmad SA. The effect of copper on the ultrastructure of Puntius javanicus hepatocyte. Aust J Basic Appl Sci. 2014;8(15):245-51.

Liu XJ, Luoa Z, Xiong BX, Liu X, Zhao YH, Hu GF, Lv GJ. Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotoxicol Environ Saf. 2010;73:1286–91.

Ajani EK, Akpoilih BU. Effect of chronic dietary copper exposure on haematology and histology of common carp (Cyprinus carpio L.). J Appl Sci Environ Manage. 2010;14:39-45.

Deore SV, Wagh SB. Heavy metal induced histopathological alterations in liver of Channa gachua (Ham). J Exp Biol. 2012;3: 35-8.

Younis EM, Abdel-Warith AA, Al-Asgah NA, Ebaid H, Mubarak M. Histological changes in the liver and intestine of Nile Tilapia, Oreochromis niloticus, exposed to sublethal concentrations of cadmium. Pak J Zool. 2013;45(3): 833-41.

Kodiha M, Chu A, Matusiewicz N, Stochaj U. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Different. 2004;11:862–74.

Sánchez L, Kodiha M, Stochaj U. Monitoring the disruption of nuclear envelopes in interphase cells with GFP-beta-galactosidase. J Biomol Tech. 2005;16:235–238.

Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mut Res. 2012;733:83– 91.

Roberts EA, Sarkar B. Liver as a key organ in the supply, storage, and excretion of copper. Am J Clin Nut. 2008;88(3):851S-854S.

Azumi N. Copper and liver injury--experimental studies on the dogs with biliary obstruction and copper loading. Hokkaido Igaku Zasshi. 1982;57(3):331-49.

Albores A, Cebrian ME, Garcia-Vargas GG, Connelly JC, Price SC, Hinton RH, Bach PH, Bridges JW. Enhanced arsenite-induced hepatic morphological and biochemical changes in phenobarbital-pretreated rats. Toxicol Pathol. 1996;24(2):172-180.

Narayana K, Al-Bader M. Ultrastructural and DNA damaging effects of lead nitrate in the liver. Exp Toxicol Pathol. 2011;63:43-51.

Jattujan P, Pinlaor S, Charoensuk L, Arunyanart C, Welbat JU, Chaijaroonkhanarak W. Curcumin prevents bile canalicular alterations in the liver of hamsters infected with Opisthorchis viverrini. Korean J Parasitol. 2013;51(6): 695–701.

Tag CG, Sauer-Lehnen S, Weiskirchen S, Borkham-Kamphorst E, Tolba RH, Tacke F, et al. Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis. J Vis Exp. 2015;96: e52438, doi:10.3791/52438.

Wang K. Molecular mechanisms of hepatic apoptosis. Cell Death Disease. 2014;5:e996

Rhee JS, Yu IT, Kim BM, Jeong CB, Lee KW, Kim MJ, Lee SJ, Park GS, Lee JS. Copper induces apoptotic cell death through reactive oxygen species-triggered oxidative stress in the intertidal copepod Tigriopus japonicus. Aquat Toxicol. 2013;15(132-133):182-9.

Downloads

Published

2015-12-15

How to Cite

Sabullah, M. K., Shukor, M. Y., Gansau, A. J., Gunasekaran, B., Shamaan, N. A., & Sulaiman, M. R. (2015). Observation of the bile canaliculi of <i>Puntius javanicus</i> liver affected by copper. Bioremediation Science and Technology Research (e-ISSN 2289-5892), 3(2), 30–32. https://doi.org/10.54987/bstr.v3i2.298

Issue

Section

Articles