Mathematical modeling of molybdenum blue production from <i>Serratia marcescens</i> strain DR.Y10

Authors

  • Ahmad Razi Othman Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.
  • Wan Lutfi Wan Johari Department of Environment, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Farrah Aini Dahalan School of Environmental Engineering, Kompleks Pusat Pengajian Jejawi 3, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/bstr.v3i2.289

Keywords:

molybdenum reduction, metal detoxification, molybdenum blue, Serratia marcescens, modified Gompertz

Abstract

The pollution of heavy metals and toxic xenobiotics has become a central issue worldwide. Bioremediation of these toxicants are being constantly carried out using novel microbes. Molybdenum reduction to molybdenum blue is a detoxification process and mathematical modelling of the reduction process can reveal important parameters such as specific reduction rate, theoretical maximum reduction and whether reduction at high molybdenum concentration affected the lag period of reduction. The used of linearization method through the use of natural logarithm transformation, although popular, is inaccurate and can only give an approximate value for the sole parameter measured; the specific growth rate. In this work, a variety of models for such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, Von Bertalanffy, Buchanan three-phase and more recently Huang were utilized for the first time to obtain values for the above parameters or constants. The modified Gompertz model was the best model in modelling the Mo-blue production curve from Serratia marcescens strain DR.Y10 based on statistical tests such as root-mean-square error (RMSE), adjusted coefficient of determination (R2), bias factor (BF), accuracy factor (AF) and corrected AICc (Akaike Information Criterion). Parameters obtained from the fitting exercise were maximum Mo-blue production rate (um), lag time (l) and maximal Mo-blue production (Ymax) of X (h-1), Y (h) and Z (nmole Mo-blue), respectively. The application of primary population growth models in modelling the Mo-blue production rate from this bacterium has become a successful undertaking. The model may also be used in other heavy metals detoxification processes. The parameters constants extracted from this work will be a substantial help for the future development of further secondary models.

References

Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994;23(3–4):277–94.

Buchanan RL, Whiting RC, Damert WC. When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14(4):313–26.

Neunhäuserer C, Berreck M, Insam H. Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut. 2001;128(1–2):85–96.

Underwood EJ. Environmental sources of heavy metals and their toxicity to man and animals. 1979;11(4–5):33–45.

Kincaid RL. Toxicity of ammonium molybdate added to drinking water of calves. J Dairy Sci. 1980;63(4):608–10.

Abo-Shakeer LKA, Ahmad SA, Shukor MY, Shamaan NA, Syed MA. Isolation and characterization of a molybdenum-reducing Bacillus pumilus strain lbna. J Environ Microbiol Toxicol. 2013;1(1):9–14.

Lim HK, Syed MA, Shukor MY. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol. 2012;52(3):296–305.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013:Article number 371058.

Shukor MY, Ahmad SA, Nadzir MMM, Abdullah MP, Shamaan NA, Syed MA. Molybdate reduction by Pseudomonas sp. strain DRY2. J Appl Microbiol. 2010;108(6):2050–8.

Shukor MY, Habib SHM, Rahman MFA, Jirangon H, Abdullah MPA, Shamaan NA, et al. Hexavalent molybdenum reduction to molybdenum blue by S. marcescens strain Dr. Y6. Appl Biochem Biotechnol. 2008;149(1):33–43.

Shukor MY, Rahman MF, Shamaan NA, Syed MS. Reduction of molybdate to molybdenum blue by Enterobacter sp. strain Dr.Y13. J Basic Microbiol. 2009;49(SUPPL. 1):S43–54.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol (Praha). 2010;55(2):137–43.

Shukor MY, Rahman MF, Suhaili Z, Shamaan NA, Syed MA. Bacterial reduction of hexavalent molybdenum to molybdenum blue. World J Microbiol Biotechnol. 2009;25(7):1225–34.

Yunus SM, Hamim HM, Anas OM, Aripin SN, Arif SM. Mo (VI) reduction to molybdenum blue by Serratia marcescens strain Dr. Y9. Pol J Microbiol. 2009;58(2):141–7.

Campbell AM, Del Campillo-Campbell A, Villaret DB. Molybdate reduction by Escherichia coli K-12 and its chl mutants. Proc Natl Acad Sci U S A. 1985;82(1):227–31.

Capaldi A, Proskauer B. Beiträge zur Kenntniss der Säurebildung bei Typhus-bacillen und Bacterium coli - Eine differential-diagnostische Studie. Z Für Hyg Infect. 1896;23(3):452–74.

Khan A, Halmi MIE, Shukor MY. Isolation of Mo-reducing bacterium in soils from Pakistan. J Environ Microbiol Toxicol. 2014;2(1):38–41.

Levine VE. The reducing properties of microorganisms with special reference to selenium compounds. J Bacteriol. 1925;10(3):217–63.

Yamaguchi S, Miura C, Ito A, Agusa T, Iwata H, Tanabe S, et al. Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: Monitoring at Mekong Delta area and in vitro experiment. Aquat Toxicol. 2007;83(1):43–51.

Zhang Y-L, Liu F-J, Chen X-L, Zhang Z-Q, Shu R-Z, Yu X-L, et al. Dual effects of molybdenum on mouse oocyte quality and ovarian oxidative stress. Syst Biol Reprod Med. 2013;59(6):312–8.

Halmi MIE, Ahmad SA, Syed MA, Shamaan NA, Shukor MY. Mathematical modelling of the molybdenum reduction kinetics in Bacillus pumilus strain Lbna. Bull Environ Sci Manag. 2014;2(1):24–9.

Ricker, F.J. 11 Growth Rates and Models. In: W.S. Hoar DJR and JRB, editor. Fish Physiology [Internet]. Academic Press; 1979 [cited 2014 Jun 27]. p. 677–743. (Bioenergetics and Growth; vol. Volume 8).

Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875–81.

Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc London. 1825;115:513–85.

Richards, F.J. A flexible growth function for empirical use. J Exp Bot. 1959;10:290–300.

Baranyi J. Mathematics of predictive food microbiology. Int J Food Microbiol. 1995;26(2):199–218.

Babák L, Šupinová P, Burdychová R. Growth models of Thermus aquaticus and Thermus scotoductus. Acta Univ Agric Silvic Mendel Brun. 2012;60(5):19–26.

López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96(3):289–300.

Buchanan RL. Predictive food microbiology. Trends Food Sci Technol. 1993;4(1):6–11.

Huang L. Optimization of a new mathematical model for bacterial growth. Food Control. 2013;32(1):283–8.

Ahmad SA, Halmi MIE, Wasoh MH, Johari WLW, Shukor MY, Syed, M.A. The development of a specific inhibitive enzyme assay for the heavy metal, lead. J Environ Bioremediation Toxicol. 2013;1(1):9–13.

Shukor MS, Shukor MY. A microplate format for characterizing the growth of molybdenum-reducing bacteria. J Environ Microbiol Toxicol. 2014;2(2):42–4.

Ghani B, Takai M, Hisham NZ, Kishimoto N, Ismail AKM, Tano T, et al. Isolation and characterization of a Mo6+-reducing bacterium. 1993;59(4):1176–80.

Shukor Y, Adam H, Ithnin K, Yunus I, Shamaan NA, Syed A. Molybdate reduction to molybdenum blue in microbe proceeds via a phosphomolybdate intermediate. J Biol Sci. 2007;7(8):1448–52.

Rahman MFA, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5. J Environ Biol. 2009;30(1):65–72.

Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA. Molybdate reduction to molybdenum blue by an Antarctic bacterium. BioMed Res Int. 2013;2013.

Halmi MIE, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al. Hexavalent molybdenum reduction to Mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14. BioMed Res Int. 2013;2013:e384541.

Shukor MY, Lee CH, Omar I, Karim MIA, Syed MA, Shamaan NA. Isolation and characterization of a molybdenum-reducing enzyme in Enterobacter cloacae strain 48. Pertanika J Sci Technol. 2003;11(2):261–72.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J Off Publ Fed Am Soc Exp Biol. 1987;1(5):365–74.

Akaike H. New look at the statistical model identification. IEEE Trans Autom Control. 1974;AC-19(6):716–23.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002. 528 p.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3–4):241–64.

Gibson AM, Bratchell N, Roberts TA. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl Bacteriol. 1987;62(6):479–90.

Johnsen AR, Binning PJ, Aamand J, Badawi N, Rosenbom AE. The Gompertz function can coherently describe microbial mineralization of growth-sustaining pesticides. Environ Sci Technol. 2013;47(15):8508–14.

McKellar RC, Knight K. A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int J Food Microbiol. 2000;54(3):171–80.

Membré J-M, Ross T, McMeekin T. Behaviour of Listeria monocytogenes under combined chilling processes. Lett Appl Microbiol. 1999;28(3):216–20.

Whiting RC. Modeling bacterial survival in unfavorable environments. J Ind Microbiol. 1993;12(3–5):240–6.

Bolker BM. Ecological Models and Data in R. Princeton, N.J: Princeton University Press; 2008. 408 p.

Downloads

Published

2015-12-15

How to Cite

Othman, A. R., Johari, W. L. W., Dahalan, F. A., & Shukor, M. Y. (2015). Mathematical modeling of molybdenum blue production from <i>Serratia marcescens</i> strain DR.Y10. Bioremediation Science and Technology Research (e-ISSN 2289-5892), 3(2), 1–6. https://doi.org/10.54987/bstr.v3i2.289

Issue

Section

Articles