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Palm Kernel Cake (PKC), a by-product of Malaysia's palm oil industry, stands out as a sustainable
and cost-efficient feed ingredient. However, its use is nutritionally limited for monogastric
animals due to high fiber content and anti-nutritional factors. This groundbreaking study explores
the innovative process of 'feedsorption'—a term we have coined under the broader concept of
'agrisorption'—to enhance the nutritional value of PKC. By adsorbing protein-rich agricultural,
poultry, and farm animal wastes, represented by bovine serum albumin (BSA), we aim to elevate
PKC's protein content. Through detailed experimentation involving varying bed depths (1 cm to
2 cm) and initial BSA concentrations (100 to 500 pg/mL) within fixed-bed columns, our findings
reveal that increased bed depths significantly prolong breakthrough and exhaustion times,
highlighting improved adsorption efficiency. Yet, depths beyond 1 cm pose a risk of clogging.
Higher BSA concentrations were found to accelerate breakthrough, indicating a stronger driving
force capable of overcoming mass transfer resistance. The Modified Dose Response (MDR)
model outperformed the Thomas model in accurately predicting breakthrough curves across
different conditions. This study not only confirms the feasibility of feedsorption to bolster the
nutritional profile of low-quality feed using protein-rich waste but also introduces a promising
avenue for enhancing sustainable livestock nutrition.

INTRODUCTION

The oil palm industry, particularly in Malaysia, has seen PKC
emerge as a significant by-product used in animal feed, reflecting
broader trends towards sustainability and cost-efficiency in
livestock production. The anticipated 21% increase in livestock
production between 2010 and 2025 underscores the pressing
need for sustainable feedstock solutions. This growth translates
into a projected increase in global feed demand from 6.0 to 7.3
billion tonnes of dry matter, highlighting the critical role of
innovative feed ingredients like PKC in meeting this surge (Kim
etal., 2019). Malaysia, a leading player in the oil palm sector, has
consistently produced approximately 1.3 million metric tonnes of
PKC annually since 1996. This figure saw a significant rise to 2.4
million metric tonnes by 2022, as reported by the Malaysian Palm
Oil Board. The export markets for Malaysian PKC are diverse,
with significant shipments to Japan, Singapore, and Europe.

Europe, in particular, has shown a keen interest in PKC for its
sustainable and cost-effective properties as an animal feed
ingredient. The price of PKC has fluctuated over the years,
influenced by global oil prices, demand for palm oil products,
and the overall supply of PKC. For instance, PKC prices have
ranged from $200 to $300 per metric tonne, varying with market
conditions and production levels. PKC offers a cost-effective
alternative to traditional feedstocks, partly due to its by-product
status and the efficiency of palm oil production. Its use can
significantly reduce feed costs for livestock farmers, contributing
to more sustainable farming practices.

The utilization of PKC in animal feed contributes to the
circular economy model by maximizing the value extracted from
oil palm cultivation. This approach not only reduces waste but
also lessens the environmental footprint of both the palm oil and
livestock industries. Despite its high fiber and moderate protein
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content, which limits its use for monogastric animals, PKC has
been successfully incorporated into ruminant diets. Research and
technological advancements are ongoing to enhance its
nutritional profile for broader applications.

The increase in PKC production to 2.4 million metric tonnes
in 2022, coupled with its price range, suggests a significant
revenue stream for Malaysia's palm oil sector. Assuming an
average price of $250 per metric tonne, the PKC market could
represent a gross annual revenue of approximately $600 million,
underscoring its economic importance. In Malaysia alone, the
export for 2021 was alone worth RM1.5 billion [1]. The global
shift towards sustainable and environmentally friendly products
has bolstered the demand for PKC. As countries and industries
strive to reduce their carbon footprint, PKC's role in animal
nutrition is poised for growth, reflecting broader trends in
sustainability and resource efficiency. PKC stands at the
intersection of environmental sustainability and economic
viability, offering a promising solution to the growing demand
for livestock feed. Its production and export from Malaysia to
countries like Japan, Singapore, and Europe highlight its global
significance, while ongoing research aims to unlock its full
potential as a sustainable feedstock.

Palm Kernel Cake (PKC), a by-product of palm oil
production, is recognized for its application in livestock feed, yet
its nutritional efficacy, particularly the bioavailable protein
content, is subject to critical evaluation. The protein content in
PKC varies from 14% to 22%, but its utilization by animals,
especially monogastrics like poultry and pigs, is limited due to
high fiber content and the presence of anti-nutritional factors
(ANFs) such as tannins and phytates. These elements not only
restrict the digestibility of proteins but also their absorption,
thereby impacting the overall nutritional value of PKC.
Furthermore, the amino acid composition of PKC might not align
with the specific dietary requirements of certain livestock,
necessitating additional nutritional supplementation to ensure a
balanced diet. To enhance the bioavailability of proteins in PKC,
various processing methods and dietary strategies are being
explored.

Techniques such as mechanical and chemical processing
aim to reduce fiber content and deactivate ANFs, thereby
improving nutrient digestibility. Additionally, the inclusion of
enzyme supplements in PKC-based diets can further aid in
breaking down fibers and ANFs, enhancing the feed's nutritional
uptake. Complementing PKC with other protein sources or
specific amino acids can also help in meeting the comprehensive
nutritional needs of livestock. As research continues to evolve in
this domain, optimizing the processing and formulation of PKC
is key to unlocking its potential as a sustainable and cost-effective
feed ingredient, contributing to the global efforts in sustainable
livestock production.

There is an urgent call for an upgrade in the nutritional
quality of PKC. In this study, we reply to the call by improving
the protein content in PKC using a surrogate protein compound
Bovine Serum Albumin (BSA) from agricultural waste effluents
such as Palm Mill Oil Effluent or other agricultural and dairy
industries and even abattoirs. We coin this process
‘feedsorption’, which falls under the bigger umbrella of ‘agri- or
agrosorption’, also a new term we coin. The oil palm sector is the
major industry in Malaysia, about 1.3 million metric tonnes of
PKC have been produced annually since 1996. Most of the PKC
produced is exported to various countries, such as Japan,
Singapore, and specifically Europe, for use as an ingredient in
animal feed formulations. In addition, the Malaysian Palm Oil

Board reported 2.4 million metric tonnes of PKC produced in
2022 (Malaysian Palm Oil Board, 2022). PKC is abundantly
produced alongside palm kernel oil from the crushing of palm
kernels, giving a yield of about 50% PKC. However, its
application as a dietary source for monogastric animals is
significantly restricted because of its elevated fiber and moderate
protein content (Mohd Firdaus et al., 2022).

MATERIALS AND METHODS

Preparation of adsorbent and adsorbate

PKC was bought from a local company (Feed Enterprise). BSA
was purchased from Sigma-Aldrich. All the chemicals utilised in
this research were of analytical grade and every technical
equipment was appropriately calibrated prior to the experiment.

Preparation of palm Kkernel cake

PKC was sieved to 1.25 mm using a Sieve standard for sieve size
1200 mm, ASTM Tolerance 1.14 — 1.22 mm prior to treatment.
The collected PKC were immersed in distilled water and kept
overnight in the chiller prior to each experiment. Under this
condition, the swelled-up size of PKC was approximate 2 mm.

Lab scale packed bed column experiments

PKC in 1 cm bed height in a glass chromatography column (XK
50/30 Cytiva, USA) column. The column is water-jacketed and
has a dimension of 200 mm height and 16 mm diameter. The
columns were packed into a bed height of 1, 1.5 and 2 cm bed
heights. The column was preconditioned by running several
hundred milliliters of 10 mM citrate buffer pH 4.8. The effect of
pH was studied by ranging the pH of the buffer from 3.5 to 5.5
using 10 mM citrate buffer, Co of 100 pg mL™'BSA and Q of 1.5
mL/min (flow rate).

Solutions containing the adsorbate at various concentrations
(ranging from 100 to 500 mg/L) were introduced into the
columns using a downward flow technique, with flow rates set at
1.5 and 2 mL/min, facilitated by a Gilson peristaltic pump.
Throughout these procedures, the experiments were conducted
under conditions of neutral pH and ambient temperature. At one-
hour intervals, effluent samples were collected to determine the
times of breakthrough and exhaustion. The point of breakthrough
(t») was identified when the concentration of the adsorbate in the
effluent reached 10% of its initial value, while the exhaust time
(te) was noted when this concentration rose to 80% of the original
adsorbate concentration in the influent [2].

Column operation parameters

Creating a graph with the ratio of C/Co (the concentration of
adsorbate in the effluent relative to the influent) against time (f)
generates the breakthrough curves, which are defined by the area
beneath these curves. The cumulative amount of adsorbate
captured by the column is denoted as g and ¢ refers to the
stoichiometric time observed in an asymmetrical breakthrough
curve [3]:

t

=t,
Qrotar = Q [,_, Crdt  (Eqn.1)

1

t=t,
ty = o di=o C,dt (Eqn. 2)

The followings are equations utilized to model column
parameters and characteristics where m represents the weight of
the adsorbent (g), the equilibrium column adsorbate uptake
capacity of the column is ge;, R is the percentage removal of
adsorbate, D is the total amount of adsorbate entering the
column, U; is the adsorbent usage rate, EBCT represents empty
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bed contact time, #, is the time of usable capacity, LUB is the
length of unused column bed while L represents the bed column
length until the breakthrough time. The volumetric flow rate
(L h™") is QO and the adsorbate removal (mg L") concentration is
represented as C, = (Co-Cy), is , t is the total time (h), exhaustion
time (h)is f.and for a breakthrough curve which is
symmetrical, #s is the time at which C/Co=0.5. The mass
transfer zone is MTZ while ¢ is the time needed for the mass
transfer zone to move the column in the length of its own height
and U is the rate of movement of mass transfer zone [3.,4]:

_ Qtotal

Geq =, (Eqn. 3)
Protar = 2o (Eqn. 4)
R(%) = % x 100 (Eqn. 5)
MTZ =L (ft—t”) (Eqn. 6)
t, = % (Eqn. 7)
U, = Mt” (Eqn. 8)
EBCT = g (Eqn. 9)
U, = Vﬂb (Eqn. 10)
te=J"(1- g—:) dt (Eqn. 11)
Ly = Z—ZL (Eqn. 12)
LUB =1 (ft—“’) (Eqn. 13)

where m is the weight of the adsorbent in the column (g),
MTZ is the length of the adsorption zone in the column (cm), that
specifies the efficiency in the use of adsorbents in the column, L
is the length of the adsorbent in the column (cm), # is
breakthrough time (%), Ve = Qt., volume of solution treated at
exhaustion (L), Vo= Qtp, volume of solution treated at
breakthrough (L), U: stands for the rate at which M7Z moves
up/down through the adsorbent bed (¢cm h™!), EBCT denotes the
time of contact between the water phase and the adsorbent which
basically measures the critical depth and contact time for an
adsorbent bed (h), U, defined as the weight of adsorbent
saturated per unit volume of adsorbate solution treated
(g L), tu is the time at which the effluent concentration reaches
its maximum permissible limit (h), Ls is the length of the bed
used up to breakthrough (cm) and LUBis the length of
the MTZ which remains unutilized even after the appearance of
the exhaustion time (cm).

In this context, m represents the mass of the adsorbent
contained within the column, measured in grams (g), while MTZ
refers to the length of the adsorption zone within the column,
measured in centimeters (cm). This length indicates how
efficiently the adsorbent is being utilized within the column. L
denotes the total length of the adsorbent bed in the column, also
in centimeters. The breakthrough time, #, is recorded in hours (h)
and marks the initial detection of adsorbate in the column
effluent. The volume of the solution processed by the column at
the point of exhaustion, Ve, is calculated as V.= Qt., with O
being the flow rate and z. the exhaustion time, resulting in a
volume measured in liters (L). Similarly, the volume at
breakthrough, V» = Qts. U: signifies the rate at which the mass
transfer zone (MTZ) advances through or retreats from the
adsorbent bed, given in centimeters per hour (cm/h).

The Empty Bed Contact Time (EBCT) is the duration of
interaction between the water phase and the adsorbent,
essentially gauging the necessary contact time and depth for the
adsorption process, noted in hours (h). U, the usage rate of the
adsorbent, is quantified as the mass of adsorbent that becomes
saturated per unit volume of treated adsorbate solution, with units
of grams per liter (g/L). The time # indicates when the effluent
concentration hits its highest acceptable level, in hours (h), while
Ly is the length of the adsorbent bed utilized up to the point of
breakthrough, in centimeters (cm). LUB represents the portion of
the MTZ that remains unused even after reaching the exhaustion
time, also in centimeters.

Kinetic modelling of column adsorption data

Many kinetics models have been developed so far for predicting
the breakthrough curves of adsorption process in continuous
mode of operation. In this study, to analyze the dynamic
behaviour of adsorbate adsorption onto the packed-column
adsorbent, a few frequently used models including Thomas,
Clark, MDR and BDST models were applied to the experimental
data. Apart from describing the breakthrough curves more
accurately, these models are useful in providing important system
parameters that can be utilized to scale up packed bed column
adsorption processes.

The Thomas model

This model, among the most frequently utilized in mathematical
modeling of adsorption processes, operates under the premise
that the kinetics of the rate-driving force adhere to second-order
reversible reaction dynamics, conforming to the Langmuir
adsorption-desorption isotherm, without any axial dispersion
present. It is optimally employed for determining the maximal
adsorption capacity of an adsorbent within column studies. It's
important to note that the Thomas and Yoon—Nelson models are
not recommended for use in conjunction with the Bohart—-Adams
model. This is due to their underlying principles being similar to
a simplified version of the Bohart—-Adams model, rendering them
essentially interchangeable in their application. Consequently,
the key parameters of the Thomas and Yoon—Nelson models
(such as k1, qo, kvn, and 7) can be directly derived from the
parameters (kp4 and Np) specified by the Bohart—Adams model,
facilitating a streamlined approach to analyzing adsorption
dynamics within columnar systems [5,6]. A simpler
mathematical expression of the same is as follows:

& _ 1

Co  1+exp(A—Bt) (Eqn. 14)
_ Krnqram

A=—"— (Eqn. 15)

Q
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B = K, Cy (Eqn. 16)

where 4 and B are the constants of the Thomas model, and ¢ is
the flow time (h). Kmis the Thomas rate constant
(Lh'mg™), g is the maximum solid phase concentration of
the solute (mg g '), m is the mass of the adsorbent (g), O is the
flow rate (Lh™') and Cpis inlet adsorbate concentration
(mgL™"). 4 and B values can be found out by nonlinear
regression analysis and subsequently, K7» and g can  be
calculated from 4 and B as per above mentioned correlation.

The Modified Dose Response model

The simplified numerical model as proposed by Yan et al.
(2001) basically helps in minimizing the error resulting from the
use of the Thomas model, predominantly at lower or higher
periods of the breakthrough curve. The mathematical expression
of the model is represented as below:

Ce 1
==1-——00 Eqn. 17

o ) (Eqn. 17)

where a and b are MDR model constants. From the value of b,
the value of the maximum solid phase concentration of the solute
(gm) can be anticipated by using the following equation:

bC,
Gm =—* (Eqn. 18)

Statistical error functions

To assess whether there's a significant variance in model
performance across those with differing numbers of parameters,
statistical measures such as the adjusted coefficient of
determination (adjR?), Root-Mean-Square Error (RMSE),
corrected Akaike Information Criterion (AICc), Hannan-Quinn
Information Criterion (HQC), Bayesian Information Criterion
(BIC), bias factor (BF), and accuracy factor (AF) were employed
on the same experimental dataset.

The RMSE, specifically designed to incorporate a penalty
for the inclusion of additional parameters, was determined using
the following equation (Eqn 19), where n represents the count of
experimental observations, p denotes the number of model
parameters, Ow: refers to the observed experimental values, and
Pui signifies the predictions made by the model [7].

RMSE = Zi=1(Pdi_0bi)z
\J n-p

Bias Factor (BF) and the Accuracy Factor (AF). Ideally, for
a perfect match between predicted and observed values, the Bias
Factor should be precisely 1, indicating a one-to-one correlation.
When the Bias Factor, as defined in Equation 2, exceeds 1, the
model is considered fail-safe, suggesting it predicts values higher
than the observed ones. Conversely, a Bias Factor less than 1
characterizes a fail-negative model, indicating predictions that
tend to be lower than actual measurements. Furthermore, the
Accuracy Factor plays a crucial role in assessing the overall
precision of the model's predictions.

(Eqn. 19)

An Accuracy Factor lower than 1 is indicative of a model
whose predictions generally fall short in accuracy. Expanding on
this, the Accuracy Factor serves as a gauge for the predictive
model’s capacity to closely estimate real-world outcomes, with
values deviating from 1 reflecting discrepancies between
predicted and observed data. This evaluation framework,
encompassing both the Bias and Accuracy Factors, provides a

comprehensive method for scrutinizing the validity and
performance of various predictive models, thereby ensuring their
effectiveness in accurately mirroring observed phenomena
(Eqns. 20 and 21).

Bias factor = 10( ™. log W)

(Eqn. 20)

|(Pd;i/Oby)|
(A1) (Eqn. 21)

Accuracy factor = 10( ™, log

In the context of linear regression, the goodness of fit for a
model is commonly assessed using the coefficient of
determination, R?, which quantifies the proportion of variance in
the dependent variable that is predictable from the independent
variable(s). However, when dealing with nonlinear regression, R?
falls short in providing a meaningful comparative analysis across
models, especially when there is a variance in the number of
parameters between the models being compared. This limitation
arises because R? does not account for the complexity added by
increasing the number of parameters, which can lead to an
overfitting of the model to the data.

To address this issue and accurately evaluate the quality of
nonlinear models, the adjusted R? metric is employed. Adjusted
R? compensates for the model complexity by incorporating the
number of predictors used, thereby providing a more reliable
measure of model quality that penalizes excessive parameters
that do not significantly improve model performance. This
adjustment allows for a more equitable comparison between
models with differing numbers of parameters, facilitating the
identification of the model that best balances fit and complexity.
In the adjusted R? formula, S2 is the total variance of the y-
variable and RMS is Residual Mean Square (Eqns. 22 and 23).

RMS
st
(1-R?)(n-1)
(n-p-1)

Adjusted (R?) =1 —

(Eqn. 22)

Adjusted (R?) =1 — (Eqn. 23)

For assessing the suitability of different statistical models
based on a specific set of experimental data, the Akaike
Information Criterion (AIC) serves as a valuable tool. The AIC
helps in comparing models by balancing the complexity of the
model against how well it fits the data, thereby guiding the
selection of a model that adequately describes the observed data
without overfitting. However, when dealing with data sets
characterized by a relatively high number of parameters
compared to the number of data points, or in cases where the data
points themselves are limited, the corrected Akaike Information
Criterion (AICc) becomes particularly important. The AICc
adjusts the AIC value to account for the sample size and the
number of estimated parameters, providing a more accurate
measure for model selection under these conditions. This
correction is crucial for preventing the overestimation of the
model's quality, ensuring a more reliable comparison and
selection of models in scenarios with complex models or sparse
data [8]. The AICc was calculated based on the following Eqn.
24.

arce =2p +nin () + 200+ 1) +

n

2(p+1)(p+2
% (Eqn. 24)

The Bayesian Information Criterion (BIC) represents
another method grounded in information theory for statistical
evaluation. Compared to the Akaike Information Criterion (AIC),
BIC imposes a more stringent penalty on models in terms of the
number of parameters they incorporate. This characteristic of
BIC makes it particularly useful in situations where overfitting is

4.
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a concern, as it discourages the selection of overly complex
models that might fit the training data well but perform poorly on
unseen data. By factoring in the number of parameters more
heavily, BIC helps in identifying models that not only fit the data
well but also maintain simplicity, potentially leading to better
generalization in predictive applications [9].

BIC =n. lanﬁ +p.ln (n) (Eqn. 25)

The Hannan-Quinn Information Criterion (HQC) is another
error function method derived from information theory,
distinguished by its inclusion of the /n (In(n)) term, where n is the
sample size. Unlike the Akaike Information Criterion (AIC),
which focuses on minimizing the information loss with less
emphasis on the sample size, HQC introduces a balance between
model complexity and the consistency of model selection across
different sample sizes. This /n (In(n)) term makes HQC more
conservative than AIC in terms of penalizing the number of
parameters, especially as the sample size increases.
Consequently, HQC is valued for its high level of consistency in
model selection, particularly in scenarios where the goal is to
avoid overfitting while considering the impact of sample size on
model reliability and validity. This makes HQC a preferable
choice in statistical evaluations that demand a more nuanced
approach to model selection, particularly in the context of larger
datasets [10];

RSS
HQC=nxlnT+2prln(lnn) (Eqn. 26)

Another is MPSD. Marquardt's Percent Standard Deviation
(MPSD) serves as another crucial metric in the realm of statistical
model evaluation. Unique in its approach, MPSD is an error
function that aligns with the distribution of the geometric mean
error, enabling it to incorporate a penalty for the model based on
the number of parameters. This characteristic is particularly
valuable for assessing model performance in a manner that
accounts for the complexity introduced by additional parameters.

By penalizing models for having a higher number of
parameters, MPSD aids in mitigating the risk of overfitting,
ensuring that the selected model does not merely capture the
noise or the specific intricacies of the dataset at hand.
Consequently, MPSD fosters the selection of models that
maintain a balance between accuracy and simplicity, promoting
generalizability and robustness in predictive analytics. This focus
on penalizing parameter count while evaluating model error
through the geometric mean makes MPSD a distinctive and
useful tool in statistical analysis and model selection processes
(Eqn. 27).

Obi—Pdi)z

ob, (Eqn. 27)

1
MPSD = IOOJH e (

where 7 is the number of experimental data, p is the number of
parameters, Ob; is the experimental data, and Pd; is the value
predicted by the model.

RESULTS AND DISCUSSION

Effect of bed depth on breakthrough curve

The analysis of breakthrough curves from column experiments at
varying bed depths reveals a distinct pattern: as the bed depth
increases from 1 ¢cm to 1.5 cm, and further to 2 cm, there is a
noticeable extension in both breakthrough and exhaustion times.
Specifically, the breakthrough times augmented from 0.216
hours to 0.383 hours, and subsequently to 0.686 hours, while
exhaustion times escalated from 0.369 hours to 0.561 hours, and
then to 0.686 hours, as demonstrated in Fig. 1 and detailed in
Table 1. In parallel, both the breakthrough and exhaustion
volumes showcased an upward trend in line with the increased
bed depths. Moreover, a notable change was observed in the
shape of the breakthrough curves; with the increment in bed
depth, the slopes of these curves became markedly gentler. This
shift indicates the development of a broader mass transfer zone,
which widened from 0.618 to 0.771, and eventually to 0.932.
These observations align with findings from previous studies,
which have similarly documented the impact of bed depth on the
dynamics of column adsorption processes [3,11-15].

Generally speaking, increasing the bed depths increases the
MTZ. For instance, a study that explored the use of a bio-
composite adsorbent derived from eggshells and sugarcane
bagasse for removing Pb(Il) ions found that increasing the bed
depth from 4 to 12 cm extended the column's lifespan and
increased the MTZ, indicating a more efficient adsorption
process. The study also observed that a higher bed depth resulted
in a minor portion of the bed remaining unused, suggesting an
optimal range for bed depth to maximize efficiency and
adsorbent usage [16]. In a fixed-bed study on the adsorption of
phosphate by dolochar, increasing the column bed depths from
1.5 to 3 and 4.5 cm increases the MTZ from 1.08 to 1.99 and
2.50, respectively [3].

Another study for the adsorption of heavy metal ions using
green macroalga highlighted that the MTZ and bed depth
relationship is not linear, with the MTZ continuously expanding
along the column length. This indicates that both advection and
dispersion processes govern the sorbate transport, and the MTZ's
expansion suggests an increase in the efficiency of the adsorption
process with bed depth [17]. Finally, a study by Yinhai He et al.
on the simultaneous removal of phosphate and ammonium using
modified zeolite in a fixed-bed column found that the adsorption
capacity increased with bed depth.

Table 1. Experimental parameters of breakthrough curves for BSA adsorption to PKC at different bed depths and concentrations of BSA.

L Mass Q GCo th  te@su) Vb Ve
(cm) g L/ mgL mgh h h L L

MTZ t, U,
cm h cm/h h

EBCT U:

BSAdotal R ts tu Te
mg % h h h

L, LUB
cm_ cm

total te Qe
gL mg (h) mg/g

1 1.05
1.5 145
2 1.98
1.05
1.05
1.05
1.05
1.05

—_—— =

45.00 0.216 0.566 0.019 0.051
45.00 0.383 0.788 0.034 0.051
45.00 0.496 0.929 0.045 0.084
9.00 0.389 0.738 0.035 0.066
18.00 0.292 0.689 0.026 0.062
27.00 0.257 0.661 0.023 0.059
36.00 0.232 0.605 0.021 0.054
45.00 0.217 0.564 0.020 0.051

0.618 0.350 1.767 0.022
0.771 0.405 1.904 0.034
0.932 0.433 2.153 0.045
0.473 0.349 1.355 0.022
0.576 0.397 1.451 0.022
0.611 0.404 1.513 0.022
0.617 0.373 1.653 0.022
0.615 0.347 1.773 0.022

54.0116.605 0.369 15.814 25.470
42.0725.245 0.561 17.410 35.460
44.3530.870 0.686 15.591 41.805
429 4879 0.542 4.647 6.642
4.44 8.388 0.466 7.989 12.402
5.00 11.718 0.434 11.160 17.847
2.67 14.242 0.396 13.563 21.780
3.08 16.619 0.369 15.827 25.380

_5.-

65.194 0.391
71.193
73.843
73.455
67.634
65.658
65.388
65.479

0.807 0.360 0.448
0.883 1.254 0.519
1.030 1.701 0.608
0.819 0.032 0.375
0.782 0.029 0.418
0.754 0.028 0.460
0.692 0.025 0.402
0.645 0.024 0.317
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The study also observed that the time for the movement of
the MTZ increased with bed height, indicating that a deeper bed
could provide a longer contact time and potentially more efficient
adsorption [18]. These studies collectively suggest that
increasing the bed depth in fixed-bed adsorption columns affects
the MTZ by extending its length and improving the efficiency of
the adsorption process. A deeper bed depth allows for a longer
contact time between the adsorbate and adsorbent, leading to a
more efficient removal of contaminants. However, the
relationship between bed depth and MTZ is complex and depends
on the specific system and conditions, including the type of
adsorbent, adsorbate, and operational parameters.

The increase in bed depth resulted in a decrease in the
equilibrium uptake capacity (geq) With the best being at 1.5 cm.
However, a bed depth of higher than 1 cm causes rapid clogging
of the column and a 1 cm bed depth was utilized throughout the
study. The effect of increasing bed depth in fixed-bed adsorption
columns on the equilibrium uptake capacity has been a subject of
research in the field of water treatment and environmental
engineering. Studies have explored how changes in bed depth
influence the adsorption capacity, efficiency, and breakthrough
curves in the removal of various contaminants. Komarabathina et
al [19] explored the potential of Liagora viscida as a biosorbent
in a packed column for lead removal. Their experiments varied
bed heights between 2 to 6 cm and found that the maximum
uptake of 53.90 mg/g was achieved at a bed height of 2 cm and a
flow rate of 20 mL/min.

This study suggests that while increasing bed depth can
enhance adsorption capacity, there exists an optimal bed height
beyond which further increases do not necessarily lead to higher
geq. In a study by Karami et al.[20], the adsorption potentials of
an iron-based metal-organic framework (Fe-BTC) for methyl
orange removal were examined through both batch and fixed-bed
column studies. The research showed that at bed depths of 0.75
and 1.5 cm, the breakthrough times were 20.0 and 46.2 h,
respectively, with maximum adsorption capacities of 20.2 and
21.6 mg/g. This indicates that while increasing the bed depth did
result in longer breakthrough times, the increase in maximum
adsorption capacity was marginal, suggesting a diminishing
return on adsorbent uptake with increased bed depth [20]. In a
fixed-bed study on the adsorption of phosphate by dolochar,
increasing the column bed depths from 1.5 to 3 and to 4.5 cm did
not increase the g, values [3]. A similar result was also reported
for the removal of phosphate from aqueous solutions by a mixture
of ground burnt patties and red soil [21].

1.2 1
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Fig. 1. Experimental breakthrough curves of BSA adsorption to PKC at
different bed depths.

Effect of initial BSA concentrations on breakthrough curve
Exploring the impact of varying initial BSA concentrations on
the adsorption dynamics, initial BSA concentrations were
adjusted within a range of 100 to 500 pg/mL, while keeping the
flow rate and bed height constant at 1| mL/min and 1 cm,
respectively. The resultant breakthrough curves, depicted in Fig.
2, clearly demonstrate an inverse relationship between the initial
BSA concentration and both the breakthrough and exhaustion
times (and volumes). Specifically, at higher BSA concentrations
in the influent, the breakthrough curves were observed to be more
pronounced and steeper, leading to an earlier onset of
breakthrough compared to scenarios with lower influent
concentrations, which exhibited more gradual breakthrough
curves and delayed bed saturation alongside a shorter mass
transfer zone (MTZ). This phenomenon can be attributed to the
role of intra-particle diffusion as the governing mechanism in the
adsorption process, which is inherently dependent on
concentration.

Consequently, variations in the concentration gradient
directly influence both the breakthrough timing and the rate of
saturation. Higher initial concentrations of BSA introduce a
greater driving force, effectively countering the resistance to
mass transfer and thus precipitating a quicker exhaustion of the
adsorbent bed. Conversely, lower concentrations of the adsorbate
lead to slower diffusion rates, attributed to a reduced mass
transfer coefficient, thereby extending the exhaustion timeframe
of the column [21,22].

The effect of increasing concentrations of adsorbate on the
Mass Transfer Zone (MTZ) in fixed-bed adsorption has been the
focus of various studies, aiming to understand how this parameter
influences the efficiency and dynamics of adsorption processes.
In one study, Dou et al. [23] explored HCI removal using a self-
prepared sorbent in a fixed-bed reactor, focusing on the
breakthrough curves and MTZ at high temperatures. Their study
revealed that the MTZ is significantly influenced by initial
concentration, flow velocity, and chemical reaction parameters.

The breakthrough time was found to be proportional to the
depth of the fixed-bed, indicating that higher initial
concentrations of adsorbate could potentially lead to a quicker
saturation of the adsorbent near the inlet, thus expanding the
MTZ. In another study, Ibrahim et al. investigated the adsorption
of sulfur dioxide (SO2) on NiO supported activated carbon in a
fixed-bed reactor. Their study found that increasing the gas flow
rate and bed height influenced the characteristics of the MTZ,
with higher adsorbate concentrations leading to quicker
breakthrough times and an expanded MTZ, which is similarly
observed in this study [24]. Lastly, Ghorbani et al [25] conducted
dynamic modeling and simulation of the fixed-bed adsorption
process, focusing on the breakthrough curve parameters for
sulfur compound removal from fuel. Their findings also showed
that higher inlet concentrations of adsorbate result in a more
utilized overall bed capacity and influence the height and
behavior of the MTZ.

These studies collectively indicate that increasing
concentrations of adsorbate in fixed-bed adsorption processes
significantly impact the MTZ, affecting both the efficiency and
dynamics of adsorption. Higher adsorbate concentrations tend to
expand the MTZ, influencing breakthrough times and adsorption
capacity. Understanding these effects is crucial for the design and
optimization of fixed-bed adsorption systems, ensuring effective
contaminant removal and efficient use of adsorbent materials.
Conversely, as the initial BSA concentration was escalated from
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100 to 500 mg/L, there was a notable increase in the uptake
capacity of PKC, rising from 7.99 to 15.827 mg/g, respectively.

This enhancement in uptake capacity can be ascribed to the
augmented driving force for diffusion alongside an increase in
the adsorbate loading rate, which is a direct consequence of the
elevated initial BSA concentration. This observation aligns with
findings from previous studies, such as a fixed-bed analysis on
phosphate adsorption using dolochar. In that study, elevating the
inlet phosphate concentrations from 5 to 15 mg/L led to an
increase in the equilibrium uptake values (geq) from 2.87 to 6.13
mg/g, underscoring the influence of initial concentration on the
adsorption capacity in fixed-bed columns [3]. Owing to the
uptake capacity, 500 mg/L initial BSA concentration was
considered in this for further experimentations.

1.2 7
1.0 1
0.8 1
—e— 100 mg/L
é’ 06 —0O—200 mg/L
S —&— 300 mg/L
—/—400 mg/L
0.4 A —8— 500 mg/L
0.2 4
0.0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Time (h)

Fig. 2. Experimental breakthrough curves of BSA adsorption to PKC at
different concentrations.

Best model according to error function analysis

Both MDR and the Thomas model are two-parameter models,
and the power of penalty-imposing error functions below would
be the same. The three curves for the bed depths data (1, 1.5 and
2 c¢cm) were subjected to error function analysis and the results
were averaged [26]. An overwhelming majority of the error
function analyses show that the MDR model performs better than
the Thomas model with the lowest RMSE, AICc, BIC, HQC and
AdjR2 value closest to unity. The error functions MPSD, AF and
BF values on the other hand indicate that the Thomas model was
the best (Table 2). Based on this, MDR was chosen as the best
model.

Table 2. Averaged error functions for three different bed depth curves.

MDR Thomas
MPSD 2.352 2.238
RMSE 0.019 0.023
adR? 0.998 0.996
AlCc -85.016 -80.131
BIC -93.046 -88.162
HQC -94.375 -89.491
BF 0.431 0.934
AF 3.686 1.493

Application of the Thomas model

The breakthrough data obtained from BSA adsorption under
various experimental setups were analyzed using the Thomas
model through a nonlinear regression technique. The resultant
predicted and experimental breakthrough curves are presented in
Figs. 3 to 4, with the associated model parameters detailed in
Table 3. An examination of the data in Table 3 reveals that the
Thomas model constant 4 exhibits an increase with heightened
bed depths, yet shows a decrease as the influent BSA
concentration rises. On the contrary, constant B displays a varied

trend compared to 4. A similar pattern in the influence of inlet
concentrations on these constants is documented in Table 4.
With regards to the parameters Kz and gz, an observation from
Table 3 indicates a decline in both parameters with an increment
in bed depths. This trend can likely be attributed to an elevated
mass transfer resistance occurring as a result of the increased bed
depth within the columns, affecting the overall efficiency of the
adsorption process. The effect of inlet concentrations showed that
the K parameter decreased whilst the gr» parameter was
increased and the reasons for this increased has been discussed
above.

Ct/Co

0 0.25 0.5 0.75 1 1.25

Time (min)

Fig. 3. Experimental and predicted breakthrough curves of BSA
adsorption to PKC at different bed depths as modelled using the Thomas
model (C=500 mg/L and Q = 1.5 mL/min).

Table 3. Estimated parameters of the Thomas model for BSA adsorption
to PKC at different bed depths (Co=500 mg L ' and Q = 1.5 mL min™).

Co A B K qrh
L(cm) Q(L/h) (mg/L) m(g) Thomas Thomas (L/h/mg) (mg/g)
1.00 0.09 500 1.05 529 14.34 0.03 15.82
1.50 0.09 500 145 6.81 12.12 0.02 1743
2.00 0.09 500 198 7.70 11.17 0.02 15.67

1.2 1
1.0 4
°
08 4 100 mg/L
o O 200 mg/L
% A 300 mgiL
0.6 A 400 mg/L
H 500 mg/L
0.4 1
0.2
0.0 T 1
0.0 0.2 04 0.6 0.8 1.0

Time (h)

Fig. 4. Experimental and predicted breakthrough curves of BSA
adsorption to PKC at various BSA concentrations as modelled using the
Thomas model (L =1 cm and Q = 1.5 mL/min).

Table 4. Estimated parameters of the MDR model for BSA adsorption to
PKC at various BSA concentrations as modelled using the Thomas model
(L=1cmand Q= 1.5 mL/min).

L Q C() A B Kz‘;, qmn

(cm) (L/h) (mg/L) m(g) Thomas Thomas(L/h/mg) (mg/g)
0.09 100 1.05 7.75 14294 0.143 4.65
0.09 200 1.05 5873 12.58 0.063 8.0

0.09 300 1.05 5368 12.346 0.041 11.18
0.09 400 1.05 5251 13259 0.033 13.58
0.09 500 1.05 52 14076 0.028  15.83

—_— =
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Application of Modified dose response model

The breakthrough data for BSA adsorption under various
experimental conditions were analyzed using the Modified Dose
Response (MDR) model through a nonlinear regression method.
The resulting experimental and predicted breakthrough curves
are depicted in Figs. 5 and 6, with the corresponding model
parameters detailed in Tables 5 and 6. An analysis of the data
reveals that the parameter b of the MDR model tends to increase
with greater bed depths but decreases as the inlet BSA
concentration rises. Conversely, the parameter a shows an
upward trend with both increasing bed depths and higher BSA
concentrations. This trend is reflective of the dynamics observed
in a similar fixed-bed adsorption study of phosphate using
dolochar, where deeper bed depths led to an increase in both a
and b parameters of the MDR model. However, a higher inlet
concentration resulted in a decrease in the b parameter, while the
effect on the a parameter varied, indicating the complex
interaction between bed depth, influent concentration, and
adsorption capacity in fixed-bed systems [3].

The maximum solid phase concentration of the solute (gm)
exhibited a decrease with increasing bed depth and flow rate, but
it showed an increase with higher initial BSA concentrations.
This trend can be attributed to the influence of mass transfer
resistance, the inadequacy of contact between adsorbate and
adsorbent, and a diminished driving force for adsorption under
certain conditions. Similar observations were noted in a fixed-
bed study focusing on phosphate adsorption using dolochar,
where an increase in bed depths led to a reduction in the g value
as per the MDR model [3]. Moreover, a comparison reveals that
the gm values derived from the MDR model closely align with the
¢e values obtained from experimental measurements across all
tested conditions. This consistency underscores the MDR
model's suitability for accurately predicting the breakthrough
curves in adsorption processes, thereby validating its
applicability and effectiveness in modeling adsorption dynamics
under various operational parameters.

Ct/Co

0 0.25 0.5 0.75 1 1.25

Time (min)

Fig. 5. Experimental and predicted breakthrough curves of BSA
adsorption to PKC at different bed depths as modelled using the MDR
model (C=500 mg/L and Q = 1.5 mL/min).

Table 5. Estimated parameters of the MDR model for BSA adsorption to
PKC at different bed depths (C;=500 mg/L and Q = 1.5 mL/min).

L QL Co a (MDR b (MDR g, (mg
(cm) h) (mg/L) m(g) constant)constant) g')
1 009 500 1.05 5307 0.032 15.24
1.5 0.09 500 145 6.527 0.05 17.24
2 0.09 500 198 7.19 0.062  15.66

1.2 7

100 mg/L
200 mg/L
300 mg/L
400 mg/L
500 mg/L

Time (h)

Fig. 6. Experimental and predicted breakthrough curves of BSA
adsorption to PKC at various BSA concentrations as modelled using the
MDR model (L =1 cm and Q = 1.5 mL/min).

Table 6. Estimated parameters of the MDR model for BSA adsorption to
PKC at various BSA concentrations as modelled using the MDR model
(L=1cmand Q= 1.5 mL/min).

L (cm)
(height Co a(MDR b (MDR
ofbed) Q(Lh) (mg/L) m(g) constant) constant)  gm (mgg?)
1 0.09 100 1 7.896 0.048 4.8
1 0.09 200 1 5.994 0.041 8.2
1 0.09 300 1 5.446 0.038 11.4
1 0.09 400 1 4.935 0.034 13.6
1 0.09 500 1 5.231 0.032 16
CONCLUSION

The analysis demonstrates that increasing the bed depth in
adsorption column experiments from 1 cm to 2 cm significantly
extends both breakthrough and exhaustion times, indicating
improved adsorption efficiency with deeper beds, albeit with a
noted increase in column clogging at depths greater than 1 cm.
Additionally, higher initial BSA concentrations lead to quicker
breakthroughs due to a stronger driving force overcoming mass
transfer resistance. The Modified Dose Response (MDR) model
outperformed the Thomas model in accurately predicting
breakthrough curves across different bed depths and BSA
concentrations, as determined by error function analysis.
However, the Thomas model still provided valuable insights into
the dynamics of adsorption, particularly highlighting the
interplay between bed depth, influent concentration, and model
constants. Ultimately, the study underscores the complexity of
optimizing adsorption processes in agrisorption, balancing
between bed depth, adsorbate concentration, and the appropriate
modeling approach to accurately predict system performance.
The results indicate the high possibility of using PKC as an
adsorbent for protein-rich agriculture, poultry and farm animal
waste to improve the nutritional content of PKC.

ABBREVIATION

0] is the volumetric flow rate (L/h)

Cy Initial concentration of BSA (mg/L)

ty Time breakthrough (h), effluent BSA concentration < 1 mg/L

Time exhaustion (h), 80% of influent BSA appears in the
t, effluent.
Volume breakthrough (L), effluent BSA concentration < 1

Vs mg/L
Volume exhaustion (L), 80% of influent BSA appears in the
V. effluent V, =Qt. volume of solution treated at exhaustion (L)

MTZ  mass transfer zone (cm),
time required for the MTZ to move the length of its own height
t. up/down the column (h),
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the rate of movement of MTZ (cm/h)

empty bed contact time (h)

adsorbent usage rate (g/L)

total BSA adsorbed (mg)

equilibrium BSA uptake capacity of the column (mg/g)
total amount of BSA entering the column (mg)

percentage removal of BSA (%)

stoichiometric time for unsymmetrical break time at which
C/Cy=0.5 and for a symmetrical breakthrough curve (h)
time at which the effluent concentration reaches its maximum
permissible limit (h)

the length of bed used up to the breakthrough time (cm)
length of unused bed (cm)
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