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INTRODUCTION 
 
The oil palm industry, particularly in Malaysia, has seen PKC 
emerge as a significant by-product used in animal feed, reflecting 
broader trends towards sustainability and cost-efficiency in 
livestock production. The anticipated 21% increase in livestock 
production between 2010 and 2025 underscores the pressing 
need for sustainable feedstock solutions. This growth translates 
into a projected increase in global feed demand from 6.0 to 7.3 
billion tonnes of dry matter, highlighting the critical role of 
innovative feed ingredients like PKC in meeting this surge (Kim 
et al., 2019). Malaysia, a leading player in the oil palm sector, has 
consistently produced approximately 1.3 million metric tonnes of 
PKC annually since 1996. This figure saw a significant rise to 2.4 
million metric tonnes by 2022, as reported by the Malaysian Palm 
Oil Board. The export markets for Malaysian PKC are diverse, 
with significant shipments to Japan, Singapore, and Europe. 

Europe, in particular, has shown a keen interest in PKC for its 
sustainable and cost-effective properties as an animal feed 
ingredient. The price of PKC has fluctuated over the years, 
influenced by global oil prices, demand for palm oil products, 
and the overall supply of PKC. For instance, PKC prices have 
ranged from $200 to $300 per metric tonne, varying with market 
conditions and production levels. PKC offers a cost-effective 
alternative to traditional feedstocks, partly due to its by-product 
status and the efficiency of palm oil production. Its use can 
significantly reduce feed costs for livestock farmers, contributing 
to more sustainable farming practices.  
 

The utilization of PKC in animal feed contributes to the 
circular economy model by maximizing the value extracted from 
oil palm cultivation. This approach not only reduces waste but 
also lessens the environmental footprint of both the palm oil and 
livestock industries. Despite its high fiber and moderate protein 
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 ABSTRACT 
Palm Kernel Cake (PKC), a by-product of Malaysia's palm oil industry, stands out as a sustainable 
and cost-efficient feed ingredient. However, its use is nutritionally limited for monogastric 
animals due to high fiber content and anti-nutritional factors. This groundbreaking study explores 
the innovative process of 'feedsorption'—a term we have coined under the broader concept of 
'agrisorption'—to enhance the nutritional value of PKC. By adsorbing protein-rich agricultural, 
poultry, and farm animal wastes, represented by bovine serum albumin (BSA), we aim to elevate 
PKC's protein content. Through detailed experimentation involving varying bed depths (1 cm to 
2 cm) and initial BSA concentrations (100 to 500 µg/mL) within fixed-bed columns, our findings 
reveal that increased bed depths significantly prolong breakthrough and exhaustion times, 
highlighting improved adsorption efficiency. Yet, depths beyond 1 cm pose a risk of clogging. 
Higher BSA concentrations were found to accelerate breakthrough, indicating a stronger driving 
force capable of overcoming mass transfer resistance. The Modified Dose Response (MDR) 
model outperformed the Thomas model in accurately predicting breakthrough curves across 
different conditions. This study not only confirms the feasibility of feedsorption to bolster the 
nutritional profile of low-quality feed using protein-rich waste but also introduces a promising 
avenue for enhancing sustainable livestock nutrition. 
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content, which limits its use for monogastric animals, PKC has 
been successfully incorporated into ruminant diets. Research and 
technological advancements are ongoing to enhance its 
nutritional profile for broader applications. 
 

The increase in PKC production to 2.4 million metric tonnes 
in 2022, coupled with its price range, suggests a significant 
revenue stream for Malaysia's palm oil sector. Assuming an 
average price of $250 per metric tonne, the PKC market could 
represent a gross annual revenue of approximately $600 million, 
underscoring its economic importance. In Malaysia alone, the 
export for 2021 was alone worth RM1.5 billion [1]. The global 
shift towards sustainable and environmentally friendly products 
has bolstered the demand for PKC. As countries and industries 
strive to reduce their carbon footprint, PKC's role in animal 
nutrition is poised for growth, reflecting broader trends in 
sustainability and resource efficiency. PKC stands at the 
intersection of environmental sustainability and economic 
viability, offering a promising solution to the growing demand 
for livestock feed. Its production and export from Malaysia to 
countries like Japan, Singapore, and Europe highlight its global 
significance, while ongoing research aims to unlock its full 
potential as a sustainable feedstock.  
 

Palm Kernel Cake (PKC), a by-product of palm oil 
production, is recognized for its application in livestock feed, yet 
its nutritional efficacy, particularly the bioavailable protein 
content, is subject to critical evaluation. The protein content in 
PKC varies from 14% to 22%, but its utilization by animals, 
especially monogastrics like poultry and pigs, is limited due to 
high fiber content and the presence of anti-nutritional factors 
(ANFs) such as tannins and phytates. These elements not only 
restrict the digestibility of proteins but also their absorption, 
thereby impacting the overall nutritional value of PKC. 
Furthermore, the amino acid composition of PKC might not align 
with the specific dietary requirements of certain livestock, 
necessitating additional nutritional supplementation to ensure a 
balanced diet. To enhance the bioavailability of proteins in PKC, 
various processing methods and dietary strategies are being 
explored.  

 
Techniques such as mechanical and chemical processing 

aim to reduce fiber content and deactivate ANFs, thereby 
improving nutrient digestibility. Additionally, the inclusion of 
enzyme supplements in PKC-based diets can further aid in 
breaking down fibers and ANFs, enhancing the feed's nutritional 
uptake. Complementing PKC with other protein sources or 
specific amino acids can also help in meeting the comprehensive 
nutritional needs of livestock. As research continues to evolve in 
this domain, optimizing the processing and formulation of PKC 
is key to unlocking its potential as a sustainable and cost-effective 
feed ingredient, contributing to the global efforts in sustainable 
livestock production.  

 
There is an urgent call for an upgrade in the nutritional 

quality of PKC. In this study, we reply to the call by improving 
the protein content in PKC using a surrogate protein compound 
Bovine Serum Albumin (BSA) from agricultural waste effluents 
such as Palm Mill Oil Effluent or other agricultural and dairy 
industries and even abattoirs. We coin this process 
‘feedsorption’, which falls under the bigger umbrella of  ‘agri- or 
agrosorption’, also a new term we coin. The oil palm sector is the 
major industry in Malaysia, about 1.3 million metric tonnes of 
PKC have been produced annually since 1996. Most of the PKC 
produced is exported to various countries, such as Japan, 
Singapore, and specifically Europe, for use as an ingredient in 
animal feed formulations. In addition, the Malaysian Palm Oil 

Board reported 2.4 million metric tonnes of PKC produced in 
2022 (Malaysian Palm Oil Board, 2022). PKC is abundantly 
produced alongside palm kernel oil from the crushing of palm 
kernels, giving a yield of about 50% PKC. However, its 
application as a dietary source for monogastric animals is 
significantly restricted because of its elevated fiber and moderate 
protein content (Mohd Firdaus et al., 2022). 
 
MATERIALS AND METHODS 
 
Preparation of adsorbent and adsorbate 
PKC was bought from a local company (Feed Enterprise). BSA 
was purchased from Sigma-Aldrich. All the chemicals utilised in 
this research were of analytical grade and every technical 
equipment was appropriately calibrated prior to the experiment.  
 
Preparation of palm kernel cake 
PKC was sieved to 1.25 mm using a Sieve standard for sieve size 
Ø200 mm, ASTM Tolerance 1.14 – 1.22 mm prior to treatment.  
The collected PKC were immersed in distilled water and kept 
overnight in the chiller prior to each experiment. Under this 
condition, the swelled-up size of PKC was approximate 2 mm.  
 
Lab scale packed bed column experiments 
PKC in 1 cm bed height in a glass chromatography column (XK 
50/30 Cytiva, USA) column. The column is water-jacketed and 
has a dimension of 200 mm height and 16 mm diameter. The 
columns were packed into a bed height of 1, 1.5 and 2 cm bed 
heights. The column was preconditioned by running several 
hundred milliliters of 10 mM citrate buffer pH 4.8. The effect of 
pH was studied by ranging the pH of the buffer from 3.5 to 5.5 
using 10 mM citrate buffer, C0 of 100 µg mL−1 BSA and Q of 1.5 
mL/min (flow rate).  
 

Solutions containing the adsorbate at various concentrations 
(ranging from 100 to 500 mg/L) were introduced into the 
columns using a downward flow technique, with flow rates set at 
1.5 and 2 mL/min, facilitated by a Gilson peristaltic pump. 
Throughout these procedures, the experiments were conducted 
under conditions of neutral pH and ambient temperature. At one-
hour intervals, effluent samples were collected to determine the 
times of breakthrough and exhaustion. The point of breakthrough  
(tb)  was identified when the concentration of the adsorbate in the 
effluent reached 10% of its initial value, while the exhaust time 
(te) was noted when this concentration rose to 80% of the original 
adsorbate concentration in the influent [2]. 
 
Column operation parameters 
Creating a graph with the ratio of  Ct/C0 (the concentration of 
adsorbate in the effluent relative to the influent) against time (t) 
generates the breakthrough curves, which are defined by the area 
beneath these curves. The cumulative amount of adsorbate 
captured by the column is denoted as qtotal and ts refers to the 
stoichiometric time observed in an asymmetrical breakthrough 
curve  [3]: 
 
𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑄𝑄 ∫ 𝐶𝐶𝑟𝑟𝑑𝑑𝑑𝑑

𝑡𝑡=𝑡𝑡𝑒𝑒
𝑡𝑡=0  (Eqn. 1) 

 
𝑡𝑡𝑠𝑠 = 1

𝐶𝐶0
∫ 𝐶𝐶𝑟𝑟𝑑𝑑𝑑𝑑
𝑡𝑡=𝑡𝑡𝑒𝑒
𝑡𝑡=0   (Eqn. 2) 

 
The followings are equations utilized to model column 

parameters and characteristics where m represents the weight of 
the adsorbent (g), the  equilibrium column adsorbate uptake 
capacity of the column is qeq, R is the percentage removal of 
adsorbate, Dtotal  is the total amount of adsorbate entering the 
column, Ur is the adsorbent usage rate, EBCT represents empty 
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bed contact time, tu is the time of usable capacity, LUB is the 
length of unused column bed while Lb represents the bed column 
length until the breakthrough time. The volumetric flow rate 
(L h−1) is Q and the adsorbate removal (mg L−1) concentration is 
represented as Cr = (C0-Ct), is , tt is the total time (h), exhaustion 
time (h) is te and for a breakthrough curve which is 
symmetrical, ts is the time at which Ct/C0 = 0.5. The mass 
transfer zone is MTZ while tz  is the time needed for the mass 
transfer zone to move the column in the length of its own height 
and  Uz is the rate of movement of mass transfer zone [3,4]: 
 
𝑞𝑞𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑚𝑚
    (Eqn. 3) 

 
 
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶0𝑄𝑄𝑡𝑡𝑒𝑒

1000
    (Eqn. 4) 

 
 
𝑅𝑅(%) = 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
× 100  (Eqn. 5) 

 
 
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐿𝐿 �𝑡𝑡𝑒𝑒−𝑡𝑡𝑏𝑏

𝑡𝑡𝑒𝑒
�   (Eqn. 6) 

 
 
𝑡𝑡𝑧𝑧 = 𝑉𝑉𝑒𝑒−𝑉𝑉𝑏𝑏

𝑄𝑄
    (Eqn. 7) 

 
 
𝑈𝑈𝑧𝑧 = 𝑀𝑀𝑀𝑀𝑀𝑀

𝑡𝑡𝑧𝑧
     (Eqn. 8) 

 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑉𝑉

𝑄𝑄
    (Eqn. 9) 

 
 
𝑈𝑈𝑟𝑟 = 𝑚𝑚

𝑉𝑉𝑏𝑏
     (Eqn. 10) 

 
 
𝑡𝑡𝑢𝑢 = ∫ �1− 𝐶𝐶𝑡𝑡

𝐶𝐶0
� 𝑑𝑑𝑑𝑑𝑡𝑡=𝑡𝑡𝑏𝑏

𝑡𝑡=0   (Eqn. 11) 
 
 
𝐿𝐿𝑏𝑏 = 𝑡𝑡𝑢𝑢

𝑡𝑡𝑡𝑡
𝐿𝐿     (Eqn. 12) 

 
 
𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿 �𝑡𝑡𝑠𝑠−𝑡𝑡𝑏𝑏

𝑡𝑡𝑠𝑠
�   (Eqn. 13) 

 
where m is the weight of the adsorbent in the column (g), 

MTZ is the length of the adsorption zone in the column (cm), that 
specifies the efficiency in the use of adsorbents in the column, L 
is the length of the adsorbent in the column (cm), tb is 
breakthrough time (h), Ve = Qte, volume of solution treated at 
exhaustion (L), Vb = Qtb, volume of solution treated at 
breakthrough (L), Uz stands for the rate at which MTZ moves 
up/down through the adsorbent bed (cm h−1), EBCT denotes the 
time of contact between the water phase and the adsorbent which 
basically measures the critical depth and contact time for an 
adsorbent bed (h), Ur defined as the weight of adsorbent 
saturated per unit volume of adsorbate solution treated 
(g L−1), tu is the time at which the effluent concentration reaches 
its maximum permissible limit (h), Lb is the length of the bed 
used up to breakthrough (cm) and LUB is the length of 
the MTZ which remains unutilized even after the appearance of 
the exhaustion time (cm). 

In this context, m represents the mass of the adsorbent 
contained within the column, measured in grams (g), while MTZ 
refers to the length of the adsorption zone within the column, 
measured in centimeters (cm). This length indicates how 
efficiently the adsorbent is being utilized within the column. L 
denotes the total length of the adsorbent bed in the column, also 
in centimeters. The breakthrough time, tb, is recorded in hours (h) 
and marks the initial detection of adsorbate in the column 
effluent. The volume of the solution processed by the column at 
the point of exhaustion, Ve, is calculated as Ve = Qte,  with Q 
being the flow rate and te the exhaustion time, resulting in a 
volume measured in liters (L). Similarly, the volume at 
breakthrough, Vb = Qtb. Uz signifies the rate at which the mass 
transfer zone (MTZ) advances through or retreats from the 
adsorbent bed, given in centimeters per hour (cm/h).  

 
The Empty Bed Contact Time (EBCT) is the duration of 

interaction between the water phase and the adsorbent, 
essentially gauging the necessary contact time and depth for the 
adsorption process, noted in hours (h). Ur , the usage rate of the 
adsorbent, is quantified as the mass of adsorbent that becomes 
saturated per unit volume of treated adsorbate solution, with units 
of grams per liter (g/L). The time tu indicates when the effluent 
concentration hits its highest acceptable level, in hours (h), while 
Lb is the length of the adsorbent bed utilized up to the point of 
breakthrough, in centimeters (cm). LUB represents the portion of 
the MTZ that remains unused even after reaching the exhaustion 
time, also in centimeters. 
 
Kinetic modelling of column adsorption data 
Many kinetics models have been developed so far for predicting 
the breakthrough curves of adsorption process in continuous 
mode of operation. In this study, to analyze the dynamic 
behaviour of adsorbate adsorption onto the packed-column 
adsorbent, a few frequently used models including Thomas, 
Clark, MDR and BDST models were applied to the experimental 
data. Apart from describing the breakthrough curves more 
accurately, these models are useful in providing important system 
parameters that can be utilized to scale up packed bed column 
adsorption processes. 
 
The Thomas model 
This model, among the most frequently utilized in mathematical 
modeling of adsorption processes, operates under the premise 
that the kinetics of the rate-driving force adhere to second-order 
reversible reaction dynamics, conforming to the Langmuir 
adsorption-desorption isotherm, without any axial dispersion 
present. It is optimally employed for determining the maximal 
adsorption capacity of an adsorbent within column studies. It's 
important to note that the Thomas and Yoon–Nelson models are 
not recommended for use in conjunction with the Bohart–Adams 
model. This is due to their underlying principles being similar to 
a simplified version of the Bohart–Adams model, rendering them 
essentially interchangeable in their application. Consequently, 
the key parameters of the Thomas and Yoon–Nelson models 
(such as kT, q0, kYN, and τ) can be directly derived from the 
parameters (kBA and N0) specified by the Bohart–Adams model, 
facilitating a streamlined approach to analyzing adsorption 
dynamics within columnar systems [5,6]. A simpler 
mathematical expression of the same is as follows: 
 
𝐶𝐶𝑡𝑡
𝐶𝐶0

= 1
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝐴𝐴−𝐵𝐵𝐵𝐵)  (Eqn. 14) 

 
 
𝐴𝐴 = 𝐾𝐾𝑇𝑇ℎ𝑞𝑞𝑇𝑇ℎ𝑚𝑚

𝑄𝑄
   (Eqn. 15) 
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𝐵𝐵 = 𝐾𝐾𝑇𝑇ℎ𝐶𝐶0   (Eqn. 16) 
 
where A and B are the constants of the Thomas model, and t is 
the flow time (h). KTh is the Thomas rate constant 
(L h−1 mg−1), qTh is the maximum solid phase concentration of 
the solute (mg g−1), m is the mass of the adsorbent (g), Q is the 
flow rate (L h−1) and C0 is inlet adsorbate concentration 
(mg L−1). A and B values can be found out by nonlinear 
regression analysis and subsequently, KTh and qTh can be 
calculated from A and B as per above mentioned correlation. 
 
The Modified Dose Response model 
The simplified numerical model as proposed by Yan et al. 
(2001) basically helps in minimizing the error resulting from the 
use of the Thomas model, predominantly at lower or higher 
periods of the breakthrough curve. The mathematical expression 
of the model is represented as below: 
 
𝐶𝐶𝑡𝑡
𝐶𝐶0

= 1 − 1

1+�𝑉𝑉𝑡𝑡𝑏𝑏 �
𝑎𝑎   (Eqn. 17) 

 
where a and b are MDR model constants. From the value of b, 
the value of the maximum solid phase concentration of the solute 
(qm) can be anticipated by using the following equation: 
 
𝑞𝑞𝑚𝑚 = 𝑏𝑏𝑏𝑏0

𝑚𝑚
     (Eqn. 18) 

 
 
Statistical error functions 
To assess whether there's a significant variance in model 
performance across those with differing numbers of parameters, 
statistical measures such as the adjusted coefficient of 
determination (adjR2), Root-Mean-Square Error (RMSE), 
corrected Akaike Information Criterion (AICc), Hannan-Quinn 
Information Criterion (HQC),  Bayesian Information Criterion 
(BIC), bias factor (BF), and accuracy factor (AF) were employed 
on the same experimental dataset.  
 

The RMSE, specifically designed to incorporate a penalty 
for the inclusion of additional parameters, was determined using 
the following equation (Eqn 19), where n represents the count of 
experimental observations, p denotes the number of model 
parameters, Obi refers to the observed experimental values, and 
Pdi signifies the predictions made by the model [7]. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
  (Eqn. 19) 

 
Bias Factor (BF) and the Accuracy Factor (AF). Ideally, for 

a perfect match between predicted and observed values, the Bias 
Factor should be precisely 1, indicating a one-to-one correlation. 
When the Bias Factor, as defined in Equation 2, exceeds 1, the 
model is considered fail-safe, suggesting it predicts values higher 
than the observed ones. Conversely, a Bias Factor less than 1 
characterizes a fail-negative model, indicating predictions that 
tend to be lower than actual measurements. Furthermore, the 
Accuracy Factor plays a crucial role in assessing the overall 
precision of the model's predictions.  

 
An Accuracy Factor lower than 1 is indicative of a model 

whose predictions generally fall short in accuracy. Expanding on 
this, the Accuracy Factor serves as a gauge for the predictive 
model’s capacity to closely estimate real-world outcomes, with 
values deviating from 1 reflecting discrepancies between 
predicted and observed data. This evaluation framework, 
encompassing both the Bias and Accuracy Factors, provides a 

comprehensive method for scrutinizing the validity and 
performance of various predictive models, thereby ensuring their 
effectiveness in accurately mirroring observed phenomena 
(Eqns. 20 and 21).  
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�   (Eqn. 20) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
� (Eqn. 21) 

 
In the context of linear regression, the goodness of fit for a 

model is commonly assessed using the coefficient of 
determination, R2, which quantifies the proportion of variance in 
the dependent variable that is predictable from the independent 
variable(s). However, when dealing with nonlinear regression, R2 
falls short in providing a meaningful comparative analysis across 
models, especially when there is a variance in the number of 
parameters between the models being compared. This limitation 
arises because R2 does not account for the complexity added by 
increasing the number of parameters, which can lead to an 
overfitting of the model to the data.  

 
To address this issue and accurately evaluate the quality of 

nonlinear models, the adjusted R2 metric is employed. Adjusted 
R2 compensates for the model complexity by incorporating the 
number of predictors used, thereby providing a more reliable 
measure of model quality that penalizes excessive parameters 
that do not significantly improve model performance. This 
adjustment allows for a more equitable comparison between 
models with differing numbers of parameters, facilitating the 
identification of the model that best balances fit and complexity. 
In the adjusted R2 formula, 𝑆𝑆𝑦𝑦2 is the total variance of the y-
variable and RMS is Residual Mean Square (Eqns. 22 and 23).  
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑌𝑌2
       (Eqn. 22) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

  (Eqn. 23) 
 

For assessing the suitability of different statistical models 
based on a specific set of experimental data, the Akaike 
Information Criterion (AIC) serves as a valuable tool. The AIC 
helps in comparing models by balancing the complexity of the 
model against how well it fits the data, thereby guiding the 
selection of a model that adequately describes the observed data 
without overfitting. However, when dealing with data sets 
characterized by a relatively high number of parameters 
compared to the number of data points, or in cases where the data 
points themselves are limited, the corrected Akaike Information 
Criterion (AICc) becomes particularly important. The AICc 
adjusts the AIC value to account for the sample size and the 
number of estimated parameters, providing a more accurate 
measure for model selection under these conditions. This 
correction is crucial for preventing the overestimation of the 
model's quality, ensuring a more reliable comparison and 
selection of models in scenarios with complex models or sparse 
data [8]. The AICc was calculated based on the following Eqn. 
24. 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑝𝑝 + 𝑛𝑛1𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑝𝑝 + 1) + 2(𝑝𝑝+1)(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
  (Eqn. 24) 

 
The Bayesian Information Criterion (BIC) represents 

another method grounded in information theory for statistical 
evaluation. Compared to the Akaike Information Criterion (AIC), 
BIC imposes a more stringent penalty on models in terms of the 
number of parameters they incorporate. This characteristic of 
BIC makes it particularly useful in situations where overfitting is 
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a concern, as it discourages the selection of overly complex 
models that might fit the training data well but perform poorly on 
unseen data. By factoring in the number of parameters more 
heavily, BIC helps in identifying models that not only fit the data 
well but also maintain simplicity, potentially leading to better 
generalization in predictive applications [9]. 
 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑝𝑝. ln (𝑛𝑛)   (Eqn. 25) 

 
The Hannan-Quinn Information Criterion (HQC) is another 

error function method derived from information theory, 
distinguished by its inclusion of the ln (ln(n)) term, where n is the 
sample size. Unlike the Akaike Information Criterion (AIC), 
which focuses on minimizing the information loss with less 
emphasis on the sample size, HQC introduces a balance between 
model complexity and the consistency of model selection across 
different sample sizes. This ln (ln(n)) term makes HQC more 
conservative than AIC in terms of penalizing the number of 
parameters, especially as the sample size increases. 
Consequently, HQC is valued for its high level of consistency in 
model selection, particularly in scenarios where the goal is to 
avoid overfitting while considering the impact of sample size on 
model reliability and validity. This makes HQC a preferable 
choice in statistical evaluations that demand a more nuanced 
approach to model selection, particularly in the context of larger 
datasets [10]; 
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛 × 𝑙𝑙𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑝𝑝 × 𝑙𝑙𝑙𝑙(ln 𝑛𝑛)  (Eqn. 26) 

 
Another is MPSD. Marquardt's Percent Standard Deviation 

(MPSD) serves as another crucial metric in the realm of statistical 
model evaluation. Unique in its approach, MPSD is an error 
function that aligns with the distribution of the geometric mean 
error, enabling it to incorporate a penalty for the model based on 
the number of parameters. This characteristic is particularly 
valuable for assessing model performance in a manner that 
accounts for the complexity introduced by additional parameters.  

 
By penalizing models for having a higher number of 

parameters, MPSD aids in mitigating the risk of overfitting, 
ensuring that the selected model does not merely capture the 
noise or the specific intricacies of the dataset at hand. 
Consequently, MPSD fosters the selection of models that 
maintain a balance between accuracy and simplicity, promoting 
generalizability and robustness in predictive analytics. This focus 
on penalizing parameter count while evaluating model error 
through the geometric mean makes MPSD a distinctive and 
useful tool in statistical analysis and model selection processes 
(Eqn. 27). 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1   (Eqn. 27) 

 

where n is the number of experimental data, p is the number of 
parameters, Obi is the experimental data, and Pdi is the value 
predicted by the model. 
 
RESULTS AND DISCUSSION 

 
 Effect of bed depth on breakthrough curve 
The analysis of breakthrough curves from column experiments at 
varying bed depths reveals a distinct pattern: as the bed depth 
increases from 1 cm to 1.5 cm, and further to 2 cm, there is a 
noticeable extension in both breakthrough and exhaustion times. 
Specifically, the breakthrough times augmented from 0.216 
hours to 0.383 hours, and subsequently to 0.686 hours, while 
exhaustion times escalated from 0.369 hours to 0.561 hours, and 
then to 0.686 hours, as demonstrated in Fig. 1 and detailed in 
Table 1. In parallel, both the breakthrough and exhaustion 
volumes showcased an upward trend in line with the increased 
bed depths. Moreover, a notable change was observed in the 
shape of the breakthrough curves; with the increment in bed 
depth, the slopes of these curves became markedly gentler. This 
shift indicates the development of a broader mass transfer zone, 
which widened from 0.618 to 0.771, and eventually to 0.932. 
These observations align with findings from previous studies, 
which have similarly documented the impact of bed depth on the 
dynamics of column adsorption processes [3,11–15].  
 

Generally speaking, increasing the bed depths increases the 
MTZ. For instance, a study that explored the use of a bio-
composite adsorbent derived from eggshells and sugarcane 
bagasse for removing Pb(II) ions found that increasing the bed 
depth from 4 to 12 cm extended the column's lifespan and 
increased the MTZ, indicating a more efficient adsorption 
process. The study also observed that a higher bed depth resulted 
in a minor portion of the bed remaining unused, suggesting an 
optimal range for bed depth to maximize efficiency and 
adsorbent usage [16]. In a fixed-bed study on the adsorption of 
phosphate by dolochar, increasing the column bed depths from 
1.5 to 3 and 4.5 cm increases the MTZ from 1.08 to 1.99 and 
2.50, respectively [3].  

 
Another study for the adsorption of heavy metal ions using 

green macroalga highlighted that the MTZ and bed depth 
relationship is not linear, with the MTZ continuously expanding 
along the column length. This indicates that both advection and 
dispersion processes govern the sorbate transport, and the MTZ's 
expansion suggests an increase in the efficiency of the adsorption 
process with bed depth [17]. Finally, a study by Yinhai He et al. 
on the simultaneous removal of phosphate and ammonium using 
modified zeolite in a fixed-bed column found that the adsorption 
capacity increased with bed depth. 

 
 

 
Table 1. Experimental parameters of breakthrough curves for BSA adsorption to PKC at different bed depths and concentrations of BSA. 
 

L Mass Q C0  tb te (95%) Vb Ve MTZ tz Uz EBCT Ur qtotal te 
(h) 

qe BSAtotal R ts tu Tt Lb LUB 
(cm) g L/h mg/L mg/h h h L L cm h cm/h h g/L mg mg/g mg % h h h cm cm 
1 1.05 0.09 500 45.00 0.216 0.566 0.019 0.051 0.618 0.350 1.767 0.022 54.01 16.605 0.369 15.814 25.470 65.194 0.391 0.270 0.807 0.360 0.448 
1.5 1.45 0.09 500 45.00 0.383 0.788 0.034 0.051 0.771 0.405 1.904 0.034 42.07 25.245 0.561 17.410 35.460 71.193 0.586 0.738 0.883 1.254 0.519 
2 1.98 0.09 500 45.00 0.496 0.929 0.045 0.084 0.932 0.433 2.153 0.045 44.35 30.870 0.686 15.591 41.805 73.843 0.713 0.876 1.030 1.701 0.608 
1 1.05 0.09 100 9.00 0.389 0.738 0.035 0.066 0.473 0.349 1.355 0.022 4.29 4.879 0.542 4.647 6.642 73.455 8.889 0.694 0.819 0.032 0.375 
1 1.05 0.09 200 18.00 0.292 0.689 0.026 0.062 0.576 0.397 1.451 0.022 4.44 8.388 0.466 7.989 12.402 67.634 6.792 0.640 0.782 0.029 0.418 
1 1.05 0.09 300 27.00 0.257 0.661 0.023 0.059 0.611 0.404 1.513 0.022 5.00 11.718 0.434 11.160 17.847 65.658 5.257 0.610 0.754 0.028 0.460 
1 1.05 0.09 400 36.00 0.232 0.605 0.021 0.054 0.617 0.373 1.653 0.022 2.67 14.242 0.396 13.563 21.780 65.388 9.232 0.559 0.692 0.025 0.402 
1 1.05 0.09 500 45.00 0.217 0.564 0.020 0.051 0.615 0.347 1.773 0.022 3.08 16.619 0.369 15.827 25.380 65.479 6.217 0.522 0.645 0.024 0.317 
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 The study also observed that the time for the movement of 
the MTZ increased with bed height, indicating that a deeper bed 
could provide a longer contact time and potentially more efficient 
adsorption [18]. These studies collectively suggest that 
increasing the bed depth in fixed-bed adsorption columns affects 
the MTZ by extending its length and improving the efficiency of 
the adsorption process. A deeper bed depth allows for a longer 
contact time between the adsorbate and adsorbent, leading to a 
more efficient removal of contaminants. However, the 
relationship between bed depth and MTZ is complex and depends 
on the specific system and conditions, including the type of 
adsorbent, adsorbate, and operational parameters.  
 

The increase in bed depth resulted in a decrease in the 
equilibrium uptake capacity (qeq) with the best being at 1.5 cm. 
However, a bed depth of higher than 1 cm causes rapid clogging 
of the column and a 1 cm bed depth was utilized throughout the 
study. The effect of increasing bed depth in fixed-bed adsorption 
columns on the equilibrium uptake capacity has been a subject of 
research in the field of water treatment and environmental 
engineering. Studies have explored how changes in bed depth 
influence the adsorption capacity, efficiency, and breakthrough 
curves in the removal of various contaminants. Komarabathina et 
al [19] explored the potential of Liagora viscida as a biosorbent 
in a packed column for lead removal. Their experiments varied 
bed heights between 2 to 6 cm and found that the maximum 
uptake of 53.90 mg/g was achieved at a bed height of 2 cm and a 
flow rate of 20 mL/min.  

 
This study suggests that while increasing bed depth can 

enhance adsorption capacity, there exists an optimal bed height 
beyond which further increases do not necessarily lead to higher 
qeq. In a study by Karami et al.[20], the adsorption potentials of 
an iron-based metal–organic framework (Fe-BTC) for methyl 
orange removal were examined through both batch and fixed-bed 
column studies. The research showed that at bed depths of 0.75 
and 1.5 cm, the breakthrough times were 20.0 and 46.2 h, 
respectively, with maximum adsorption capacities of 20.2 and 
21.6 mg/g. This indicates that while increasing the bed depth did 
result in longer breakthrough times, the increase in maximum 
adsorption capacity was marginal, suggesting a diminishing 
return on adsorbent uptake with increased bed depth [20]. In a 
fixed-bed study on the adsorption of phosphate by dolochar, 
increasing the column bed depths from 1.5 to 3 and to 4.5 cm did 
not increase the qeq values [3]. A similar result was also reported 
for the removal of phosphate from aqueous solutions by a mixture 
of ground burnt patties and red soil [21]. 
 

 
 
Fig. 1. Experimental breakthrough curves of BSA adsorption to PKC at 
different bed depths. 
 

Effect of initial BSA concentrations on breakthrough curve 
Exploring the impact of varying initial BSA concentrations on 
the adsorption dynamics, initial BSA concentrations were 
adjusted within a range of 100 to 500 µg/mL, while keeping the 
flow rate and bed height constant at 1 mL/min and 1 cm, 
respectively. The resultant breakthrough curves, depicted in Fig. 
2, clearly demonstrate an inverse relationship between the initial 
BSA concentration and both the breakthrough and exhaustion 
times (and volumes). Specifically, at higher BSA concentrations 
in the influent, the breakthrough curves were observed to be more 
pronounced and steeper, leading to an earlier onset of 
breakthrough compared to scenarios with lower influent 
concentrations, which exhibited more gradual breakthrough 
curves and delayed bed saturation alongside a shorter mass 
transfer zone (MTZ). This phenomenon can be attributed to the 
role of intra-particle diffusion as the governing mechanism in the 
adsorption process, which is inherently dependent on 
concentration.  
 

Consequently, variations in the concentration gradient 
directly influence both the breakthrough timing and the rate of 
saturation. Higher initial concentrations of BSA introduce a 
greater driving force, effectively countering the resistance to 
mass transfer and thus precipitating a quicker exhaustion of the 
adsorbent bed. Conversely, lower concentrations of the adsorbate 
lead to slower diffusion rates, attributed to a reduced mass 
transfer coefficient, thereby extending the exhaustion timeframe 
of the column [21,22].  
 

The effect of increasing concentrations of adsorbate on the 
Mass Transfer Zone (MTZ) in fixed-bed adsorption has been the 
focus of various studies, aiming to understand how this parameter 
influences the efficiency and dynamics of adsorption processes. 
In one study, Dou et al. [23] explored HCl removal using a self-
prepared sorbent in a fixed-bed reactor, focusing on the 
breakthrough curves and MTZ at high temperatures. Their study 
revealed that the MTZ is significantly influenced by initial 
concentration, flow velocity, and chemical reaction parameters.  

 
The breakthrough time was found to be proportional to the 

depth of the fixed-bed, indicating that higher initial 
concentrations of adsorbate could potentially lead to a quicker 
saturation of the adsorbent near the inlet, thus expanding the 
MTZ.  In another study, Ibrahim et al. investigated the adsorption 
of sulfur dioxide (SO2) on NiO supported activated carbon in a 
fixed-bed reactor. Their study found that increasing the gas flow 
rate and bed height influenced the characteristics of the MTZ, 
with higher adsorbate concentrations leading to quicker 
breakthrough times and an expanded MTZ, which is similarly 
observed in this study [24]. Lastly, Ghorbani et al [25] conducted 
dynamic modeling and simulation of the fixed-bed adsorption 
process, focusing on the breakthrough curve parameters for 
sulfur compound removal from fuel. Their findings also showed 
that higher inlet concentrations of adsorbate result in a more 
utilized overall bed capacity and influence the height and 
behavior of the MTZ.  

 
These studies collectively indicate that increasing 

concentrations of adsorbate in fixed-bed adsorption processes 
significantly impact the MTZ, affecting both the efficiency and 
dynamics of adsorption. Higher adsorbate concentrations tend to 
expand the MTZ, influencing breakthrough times and adsorption 
capacity. Understanding these effects is crucial for the design and 
optimization of fixed-bed adsorption systems, ensuring effective 
contaminant removal and efficient use of adsorbent materials. 
Conversely, as the initial BSA concentration was escalated from 
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100 to 500 mg/L, there was a notable increase in the uptake 
capacity of PKC, rising from 7.99 to 15.827 mg/g, respectively.  

 
This enhancement in uptake capacity can be ascribed to the 

augmented driving force for diffusion alongside an increase in 
the adsorbate loading rate, which is a direct consequence of the 
elevated initial BSA concentration. This observation aligns with 
findings from previous studies, such as a fixed-bed analysis on 
phosphate adsorption using dolochar. In that study, elevating the 
inlet phosphate concentrations from 5 to 15 mg/L led to an 
increase in the equilibrium uptake values (qeq) from 2.87 to 6.13 
mg/g, underscoring the influence of initial concentration on the 
adsorption capacity in fixed-bed columns [3]. Owing to the 
uptake capacity, 500 mg/L initial BSA concentration was 
considered in this for further experimentations. 
 

 
Fig. 2. Experimental breakthrough curves of BSA adsorption to PKC at 
different concentrations. 
 
Best model according to error function analysis 
Both MDR and the Thomas model are two-parameter models, 
and the power of penalty-imposing error functions below would 
be the same. The three curves for the bed depths data (1, 1.5 and 
2 cm) were subjected to error function analysis and the results 
were averaged [26]. An overwhelming majority of the error 
function analyses show that the MDR model performs better than 
the Thomas model with the lowest RMSE, AICc, BIC, HQC and 
AdjR2 value closest to unity. The error functions MPSD, AF and 
BF values on the other hand indicate that the Thomas model was 
the best (Table 2). Based on this, MDR was chosen as the best 
model. 
 
Table 2. Averaged error functions for three different bed depth curves. 
 

 MDR Thomas 
MPSD 2.352 2.238 
RMSE 0.019 0.023 
adR2 0.998 0.996 
AICc -85.016 -80.131 
BIC -93.046 -88.162 
HQC -94.375 -89.491 
BF 0.431 0.934 
AF 3.686 1.493 

 
 
Application of the Thomas model 
The breakthrough data obtained from BSA adsorption under 
various experimental setups were analyzed using the Thomas 
model through a nonlinear regression technique. The resultant 
predicted and experimental breakthrough curves are presented in 
Figs. 3 to 4, with the associated model parameters detailed in 
Table 3. An examination of the data in Table 3 reveals that the 
Thomas model constant A exhibits an increase with heightened 
bed depths, yet shows a decrease as the influent BSA 
concentration rises. On the contrary, constant B displays a varied 

trend compared to A. A similar pattern in the influence of inlet 
concentrations on these constants is documented in Table 4. 
With regards to the parameters  KTh and qTh, an observation from 
Table 3 indicates a decline in both parameters with an increment 
in bed depths. This trend can likely be attributed to an elevated 
mass transfer resistance occurring as a result of the increased bed 
depth within the columns, affecting the overall efficiency of the 
adsorption process. The effect of inlet concentrations showed that 
the KTh parameter decreased whilst the qTh  parameter was 
increased and the reasons for this increased has been discussed 
above. 
 

 
Fig. 3. Experimental and predicted breakthrough curves of BSA 
adsorption to PKC at different bed depths as modelled using the Thomas 
model (C0=500 mg/L and Q = 1.5 mL/min). 
 
Table 3. Estimated parameters of the Thomas model for BSA adsorption 
to PKC at different bed depths (C0=500 mg L−1 and Q = 1.5 mL min-1). 
 

L (cm) Q (L/h) 
C0 

(mg/L) m (g) 
A 

Thomas 
B 

Thomas 
KTh 

(L/h/mg) 
qTh 

(mg/g) 
1.00 0.09 500 1.05 5.29 14.34 0.03 15.82 
1.50 0.09 500 1.45 6.81 12.12 0.02 17.43 
2.00 0.09 500 1.98 7.70 11.17 0.02 15.67 

 

 
Fig. 4. Experimental and predicted breakthrough curves of BSA 
adsorption to PKC at various BSA concentrations as modelled using the 
Thomas model (L = 1 cm and Q = 1.5 mL/min). 
 
 
Table 4. Estimated parameters of the MDR model for BSA adsorption to 
PKC at various BSA concentrations as modelled using the Thomas model 
(L = 1 cm and Q = 1.5 mL/min). 
 

L 
(cm) 

Q 
(L/h) 

C0 
(mg/L) m (g) 

A 
Thomas 

B 
Thomas 

KTh 
(L/h/mg) 

qTh 
(mg/g) 

1 0.09 100 1.05 7.75 14.294 0.143 4.65 
1 0.09 200 1.05 5.873 12.58 0.063 8.0 
1 0.09 300 1.05 5.368 12.346 0.041 11.18 
1 0.09 400 1.05 5.251 13.259 0.033 13.58 
1 0.09 500 1.05 5.2 14.076 0.028 15.83 
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Application of Modified dose response model 
The breakthrough data for BSA adsorption under various 
experimental conditions were analyzed using the Modified Dose 
Response (MDR) model through a nonlinear regression method. 
The resulting experimental and predicted breakthrough curves 
are depicted in Figs. 5 and 6, with the corresponding model 
parameters detailed in Tables 5 and 6. An analysis of the data 
reveals that the parameter b of the MDR model tends to increase 
with greater bed depths but decreases as the inlet BSA 
concentration rises. Conversely, the parameter a shows an 
upward trend with both increasing bed depths and higher BSA 
concentrations. This trend is reflective of the dynamics observed 
in a similar fixed-bed adsorption study of phosphate using 
dolochar, where deeper bed depths led to an increase in both a 
and b parameters of the MDR model. However, a higher inlet 
concentration resulted in a decrease in the b parameter, while the 
effect on the a parameter varied, indicating the complex 
interaction between bed depth, influent concentration, and 
adsorption capacity in fixed-bed systems [3].  
 

The maximum solid phase concentration of the solute (qm) 
exhibited a decrease with increasing bed depth and flow rate, but 
it showed an increase with higher initial BSA concentrations. 
This trend can be attributed to the influence of mass transfer 
resistance, the inadequacy of contact between adsorbate and 
adsorbent, and a diminished driving force for adsorption under 
certain conditions. Similar observations were noted in a fixed-
bed study focusing on phosphate adsorption using dolochar, 
where an increase in bed depths led to a reduction in the qm value 
as per the MDR model  [3]. Moreover, a comparison reveals that 
the qm values derived from the MDR model closely align with the 
qe values obtained from experimental measurements across all 
tested conditions. This consistency underscores the MDR 
model's suitability for accurately predicting the breakthrough 
curves in adsorption processes, thereby validating its 
applicability and effectiveness in modeling adsorption dynamics 
under various operational parameters. 
 

 
Fig. 5. Experimental and predicted breakthrough curves of BSA 
adsorption to PKC at different bed depths as modelled using the MDR 
model (C0=500 mg/L and Q = 1.5 mL/min). 
 
Table 5. Estimated parameters of the MDR model for BSA adsorption to 
PKC at different bed depths (C0=500 mg/L and Q = 1.5 mL/min). 
 

L 
(cm) 

Q (L 
h-1) 

C0 
(mg/L) m (g) 

a (MDR 
constant) 

b (MDR 
constant) 

qm (mg 
g-1) 

1 0.09 500 1.05 5.307 0.032 15.24 
1.5 0.09 500 1.45 6.527 0.05 17.24 
2 0.09 500 1.98 7.19 0.062 15.66 

 

 
 
Fig. 6. Experimental and predicted breakthrough curves of BSA 
adsorption to PKC at various BSA concentrations as modelled using the 
MDR model (L = 1 cm and Q = 1.5 mL/min). 
 
Table 6. Estimated parameters of the MDR model for BSA adsorption to 
PKC at various BSA concentrations as modelled using the MDR model 
(L = 1 cm and Q = 1.5 mL/min). 
 

L (cm) 
(height 
of bed)  Q (L h-1)  

C0 

(mg/L)  m (g)  
a (MDR 
constant)  

b (MDR 
constant)  qm (mg g-1)  

1 0.09 100 1 7.896 0.048 4.8 
1 0.09 200 1 5.994 0.041 8.2 
1 0.09 300 1 5.446 0.038 11.4 
1 0.09 400 1 4.935 0.034 13.6 
1 0.09 500 1 5.231 0.032 16 

 
 
CONCLUSION 
 
The analysis demonstrates that increasing the bed depth in 
adsorption column experiments from 1 cm to 2 cm significantly 
extends both breakthrough and exhaustion times, indicating 
improved adsorption efficiency with deeper beds, albeit with a 
noted increase in column clogging at depths greater than 1 cm. 
Additionally, higher initial BSA concentrations lead to quicker 
breakthroughs due to a stronger driving force overcoming mass 
transfer resistance. The Modified Dose Response (MDR) model 
outperformed the Thomas model in accurately predicting 
breakthrough curves across different bed depths and BSA 
concentrations, as determined by error function analysis. 
However, the Thomas model still provided valuable insights into 
the dynamics of adsorption, particularly highlighting the 
interplay between bed depth, influent concentration, and model 
constants. Ultimately, the study underscores the complexity of 
optimizing adsorption processes in agrisorption, balancing 
between bed depth, adsorbate concentration, and the appropriate 
modeling approach to accurately predict system performance. 
The results indicate the high possibility of using PKC as an 
adsorbent for protein-rich agriculture, poultry and farm animal 
waste to improve the nutritional content of PKC. 
 
ABBREVIATION 
 
Q  is the volumetric flow rate (L/h) 
C0 Initial concentration of BSA (mg/L) 
tb  Time breakthrough (h), effluent BSA concentration < 1 mg/L 

te  
Time exhaustion (h), 80% of influent BSA appears in the 
effluent. 

Vb 
Volume breakthrough (L), effluent BSA concentration < 1 
mg/L 

Ve 
Volume exhaustion (L), 80% of influent BSA appears in the 
effluent Ve =Qte volume of solution treated at exhaustion (L) 

MTZ mass transfer zone (cm), 

tz 
time required for the MTZ to move the length of its own height 
up/down the column (h), 
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Uz the rate of movement of MTZ (cm/h) 
EBCT empty bed contact time (h) 
Ur  adsorbent usage rate (g/L) 
qtotal  total BSA adsorbed (mg) 
qeq equilibrium BSA uptake capacity of the column (mg/g) 
Dtotal  total amount of BSA entering the column (mg) 
R percentage removal of BSA  (%) 

ts  
stoichiometric time for unsymmetrical break time at which 
Ct/C0 =0.5 and for a symmetrical breakthrough curve (h) 

tu  
time at which the effluent concentration reaches its maximum 
permissible limit (h) 

Lb the length of bed used up to the breakthrough time (cm) 
LUB length of unused bed (cm) 
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