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INTRODUCTION 
 
Although dyes serve an important purpose in the manufacturing 
and industrial sectors, improper waste management will lead to 
contamination by dye. Although natural colors have no 
alternatives, these manufactured colours may be harmful to 
humans and animals alike. Dye contamination of the main water 
supply is a direct result of rapid industrialisation, which has 
negative ecological effects. Colorful, high in BOD (biochemical 
oxygen demand) and COD (chemical oxygen demand), with high 
TOC (total organic carbon) and higher SS (suspended solids), 
temperature (high), pH (low), turbidity (high), and toxicity, these 
textile effluents are often overlooked  [2].  
 

Basic dyes, particularly those having a triphenylmethane 
structure, are extremely hazardous to fish and can kill them 
quickly. Many acid dyes appear to be toxic to fish [3,4]. Recent 
years have seen an explosion in the number of reports of 
microbes capable of decolorizing triphenylmethane colors at the 
laboratory scale [3–7]. Basic violet 3 (crystal violet), a 
commercially-used triphenylmethane textile dye, is a refractory 
molecule because it is poorly digested by bacteria and, as a result, 

persists for a long time in the environment  [6,7]. Some fish 
species may be more susceptible to developing tumors when 
exposed to Basic Violet 3, a compound that acts as a mutagen, 
mitotic toxin, and clastogen. There is evidence that basic violet 3 
causes cancer in rats and mice. Thus, basic violet 3 
bioaccumulation raises problems for both the environment and 
animal health [8–10]. The incorrect disposal of chemical waste 
from dyeing factories has led to the discovery of basic violet 3 in 
water streams. the public may be exposed to the dye and its 
metabolites through the eating of treated chicken products due to 
its low cost, efficacy as an antifungal agent for commercial 
poultry feed, and quick availability [8–10].  
 

Contaminants in soil, water, or sediments can be remedied 
by bioremediation, which makes useful use of biodegradable 
methods to remove or purify pollutants that otherwise might 
endanger public health and safety [11,12]. According to this 
definition, bioremediation is the process of using organisms to 
remove, bind, or convert environmental pollutants. It is common 
knowledge in the realm of dyes that certain microbes may 
degrade the poison in their environment. Microorganisms' 
potential to break down, decolorize, transform, and mineralize 
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 ABSTRACT 
Crystal violet or gentian violet or basic violet 3 (BV) is an essential dye utilized as a dye for 
textiles and paper, as well as being an ingredient in inks used for printing, ballpoint pens, and 
inkjet printers. In some cases, it is utilized for the purpose of imparting color to a variety of items, 
including  antifreeze, fertilizer, detergent, and leather. The use of microorganisms for the purpose 
of BV bioremediation is becoming increasingly common. A number of secondary models, 
including Monod, Haldane, Teissier, Aiba, Yano and Koga, Hans-Levenspiel, Webb, and the 
Luong model, can be used to estimate the rate of decolorization, which is frequently blocked at 
high concentrations of toxicant. These models can be used to simulate the process. The best model 
based on statistical analysis was Teissier with the highest value for the adjusted coefficient of 
determination and the lowest values for RMSE, AICc and the closest value to 1.0 for accuracy 
and bias factors. The Teissier model was found to conform to normality tests and is adequate to 
be used to fit the experimental data. The experimental data obtained indicates that BV is toxic 
and slows down the rate of decolourisation at higher concentrations. The maximum BV specific 
biodegradation rate (qmax), half-saturation concentration (KS), half inhibition concentration (Ki) 
was 0.145 h-1, 0.408 mg/L and 73.205 mg/L, respectively. 

KEYWORDS 
 
Bioremediation 
Substrate Inhibition Kinetics 
Staphylococcus aureus 
Basic Violet 3 
Teissier model 

 

 
BIOREMEDIATION SCIENCE AND TECHNOLOGY 

RESEARCH 
 

Website: http://journal.hibiscuspublisher.com/index.php/BSTR/index 
 BSTR VOL 10 NO 2 2022 

SEM of seaweed 

https://doi.org/10.54987/bstr
mailto:adeela@upm.edu.my


BSTR, 2022, Vol 10, No 2, 50-55 
https://doi.org/10.54987/bstr.v10i2.790   

 

- 51 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

colors into harmless, non-toxic byproducts has been studied for 
decades. Further, microorganisms used for color degradation 
have a positive environmental impact since they require less 
chemicals to eradicate the polluted area. When compared to the 
costs of chemical and physical breakdown processes, 
bioremediation is a more economical option since it requires less 
energy when fewer chemicals are used. 
 

The inhibitory effect of dye or its degradation metabolite to 
the growth or degradation rate of the dye can be modelled using 
secondary models such as Haldane, which is popular due to it 
simple equation and has been reported in several studies [13–15] 
despite the existence of numerous other secondary models such 
as  Teissier, Aiba, Yano and Koga, Hans-Levenspiel, Webb and 
the Luong that can predicte concentrations of toxicant that can 
completely ceased growth or degradationr rate. 
 

In a previous work, a recalcitrant dye; Basic Violet 3 is 
degraded by Staphylococcus aureus and hence has the potential 
to be a remediation agent. According to this definition, 
bioremediation is the process of using organisms to remove, bind, 
or convert environmental pollutants. It is common knowledge in 
the realm of dyes that certain microbes may degrade the poison 
in their environment. Microorganisms' potential to break down, 
decolorize, transform, and mineralize colors into harmless, non-
toxic by-products has been studied for decades.  

 
Further, microorganisms used for colour degradation have a 

positive environmental impact since they require less chemicals 
to eradicate the polluted area. When compared to the costs of 
chemical and physical breakdown processes, bioremediation is a 
more economical option since it requires less energy when fewer 
chemicals are used. Such as the adjusted coefficient of 
determination (adjR2), root means square error (RMSE), 
corrected Akaike Information Criterion (AICc), accuracy factor 
(AF) and bias factor (BF). 
 
MATERIALS AND METHODS 
 
Data acquisition 
Graphical data of a published work from Figure 8 (Specific 
growth of Staphylococcus aureus in the presence of basic violet 
3 and basic green 4 under different initial dye concentration. pH: 
7; Initial dye concentration: 10-500 mg/L)  [16] were 
electronically processed using WebPlotDigitizer 2.5 [17] which 
helps to digitize scanned plots into table of data with good 
precision and reliability [18,19]. The data then extracted to excel 
file format for further analysis.  
 
Fitting of the data 
The data were fitted using a nonlinear regression that uses a 
Marquardt algorithm (Table 1).  CurveExpert Professional 
software (Version 1.6), which minimizes the sums of the square 
of the differences between values of the predicted and measured.  
 
Statistical analysis 
Root-mean-square error (RMSE) is a measure of how dispersed 
the residuals (prediction errors) are relative to the mean. In Eq. 1, 
p represents the number of parameters in the evaluated model, 
Obi represents the experimental data, Pdi represents the values 
predicted by the model, and n represents the quantity of 
experimental data. 
 
 
 
 

Table 1. Kinetic models for the growth of Staphylococcus aureus on 
dyes. 
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Note: 
qmax maximal decolourisation rate (h-1) 
Ks  half saturation constant for maximal degradation (mg/L) 
Sm  maximal concentration of substrate tolerated and (mg/L) 
m, n, K curve parameters 
S substrate concentration (mg/L) 
P product concentration (mg/L) 
 
 
The RMSE was calculated as folows,  
 

     (Eqn. 1) 
where  
 
n  number of experimental data  
Pdi   pvioleticted values by the model  
Obi  experimental data 
p   parameters number of the model 
 

This error function penalizes for a high number of 
parameters; as a general rule, a model with fewer parameters 
would have a reduced root-mean-squared error (RMSE) [28], 
which is preferable. The coefficient of determination, or R2, is 
commonly used in linear and nonlinear regression for judging the 
degree of fit. Unfortunately, the approach does not allow for 
open-ended model comparisons since it does not account for the 
amount of model parameters. A method is provided below to 
calculate the quality of nonlinear models using an adjusted R2 
that accounts for the number of parameters in the models (Eqns. 
2 and 3). 
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    (Eqn. 2) 
 

   (Eqn. 3) 
where  
 

is the total variance of the y-variable and RMS is the 
Residual Mean Square  
 

An indicator of the relative quality of statistical models is 
provided by the Akaike information criterion (also known as 
AIC). Information theory is the foundation upon which it is built. 
The error function makes a trade-off between the goodness of fit 
of different models while taking the number of parameters in the 
model into account. The model that has the lowest value for the 
AIC metric is the one that should be chosen as the best option. A 
corrected version of the AIC, known as the Akaike information 
requirements (AIC) with the correction or AICc, is used in place 
of the original when the amount of data in a study is limited in 
relation to the total number of parameters [29].  

 
A difference of five normally suggests that there is a greater 

possibility of the data with the smaller value being true or correct. 
However, the actual figures themselves are not significant; what 
is important is the magnitude of the difference. The formula 
includes a variables penalty, which states that the greater the AIC 
value, the less parsimonious the model is. This variable penalty 
increases as the number of variables increases. When trying to fit 
experimental data, AIC strongly advises against using more 
complicated models (also known as "overfitting"). AICc is 
calculated using the following equation (Eqn. 4); 
 

  (Eqn. 4) 
 
Where  
n  number of data points   
p  parameter numbers of the model 
 

Accuracy Factor (AF) and Bias Factor (BF) (Eqns. 5 and 6) 
are two more goodness-of-fit models that have been adopted 
from popular use in predictive microbiology for bacterial growth 
in food science. Both of these models may be found in Equations 
5 and 6 [30]. The statistics calculates the perfect match between 
experimental and predicted values. As a rule, a BF value > 1.0 
indicates a model which is fail-safe a value < 1.0 indicates a 
model that is fail-dangerous. On the other hand, the AF is always 
≥ 1.0, with precise models giving values nearing to 1.0. 
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Assesment of normality (Eqn. 7) for the residuals was 
carried out using the GraphPad Prism® 6 (Version 6.0, GraphPad 
Software, Inc., USA). The residual for the ith observation in the 
regression model can be mathematically represented as follows; 
 

   (Eqn. 7) 
 

Where the ith response from a given data set is denoted by yi while 
at each set of the ith observation, the vector for the explanatory 
variables is xi [1] 
 

Where the ith response from a given data set is denoted by yi 
while at each set of the ith observation, the vector for the 
explanatory variables is xi [1], the normality tests carried out is 
based on the tests of Kolmogorov-Smirnov [31,32], Wilks-
Shapiro [33] and the D'Agostino-Pearson omnibus K2 test [34]. 
 
RESULTS AND DISCUSSION  
 
For the purpose of fitting the particular decolorization rate, a 
number of secondary models (Figs. 1–8) were utilized, and while 
the most of these models demonstrate visually acceptable fitting 
(with the exception of Monod), the Hans–Levenspiel model was 
unable to converge. Teissier was found to be the most accurate 
model based on statistical analysis; it had the highest value for 
the adjusted coefficient of determination, the lowest values for 
RMSE and AICc, and the value that was closest to 1.0 for 
accuracy and bias factors.  
 

Teissier was the best model. The Teissier model was 
deemed to be suitable for use in fitting the experimental data 
since it passed the normality tests and was found to adhere to the 
model's assumptions. The results of the performed normality tests 
indicate that the model satisfies the requirements for passing the 
normalcy tests with a p value greater than 0.05 for each of the 
normality tests performed [1]. The experimental data obtained 
indicates that BV is toxic and slows down the rate of 
decolourisation at higher concentrations. The maximum BV 
specific biodegradation rate (qmax), half-saturation concentration 
(KS), half inhibition concentration (Ki) was 0.145 h-1, 0.408 mg/L 
and 73.205 mg/L, respectively. 
 

 
Fig. 1. Fitting the effect of Basic violet 3 dye concentration on specific 
growth rate by Staphylococcus aureus using the Aiba model. 

 
Fig. 2. Fitting the effect of Basic violet 3 dye concentration on specific 
growth rate by Staphylococcus aureus using the Luong model. 
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Fig. 3. Fitting the effect of Basic violet 3 dye concentration on specific 
growth rate by Staphylococcus aureus using the Haldane model. 

 
Fig. 4. Fitting the effect of Basic violet 3 dye concentration on specific 
growth rate by Staphylococcus aureus using the Monod model. 

 
Fig. 5. Fitting the effect of Basic violet 3 dye concentration on specific 
growth rate by Staphylococcus aureus using the Teissier model. 

 
Fig. 6. Fitting the effect of Basic violet 3 dye concentration on specific 
growth rate by Staphylococcus aureus using the Yano model. 

 
Fig. 7. Fitting the effect of Basic violet 3 dye concentration on specific 
growth rate by Staphylococcus aureus using the Webb model. 
 
Table 2. Statistical analysis of kinetic models. 
 

Model p RMSE R2 adR2 AICc BF AF 
Aiba 3 0.003 0.995 0.993 -83.57 1.069 1.196 
Luong 4 0.011 0.952 0.904 -48.54 1.460 1.460 
Haldane 3 0.006 0.982 0.972 -72.42 1.373 1.402 
Monod 2 0.044 0.764 0.665 -43.84 1.297 2.218 
Tessier-Edward 3 0.003 0.995 0.993 -83.39 1.052 1.192 
Yano 3 0.003 0.997 0.994 -73.17 1.185 1.270 
Webb 4 0.010 0.921 0.921 -50.28 1.531 1.270 
Hans-Levenspiel 5 0.012 N.A. N.A. -50.28 1.5504 1.5504 

 
Note: 
 
df Degree of freedom 
RMSE  Root Mean Square Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
N.A.  Not available 
 

In spite of the fact that this kind of activity is commonly 
carried out in other xenobiotics-degrading microorganism 
operations, mathematical modeling on the effect of substrate 
(dyes) on the growth rate of dye-degrading bacteria is rarely 
done. The model parameters that are derived from this kind of 
exercise can be a helpful tool in evaluating the efficiencies of 
different degraders, and they can also be used to predict the 
inhibitory effect that substrate has in field experiments. 
Additionally, the Hans-Levenspiel model was the most accurate 
representation of Ralstonia eutropha's ability to break down 
methylene blue (MB). Maximum MB specific biodegradation 
rate (qmax), maximum permissible MB concentration (Sm), and 
shape factors (n and m) were determined.7.37 mg gcell-1 h-1, 32.13 
mg/L, 158.8 mg/L, 0.27, and 0.76, respectively [35].  
 

The Haldane model is typically the one that serves as the 
foundation for the majority of the research conducted on dye 
decolorizing kinetics. For example, in the process by which 
Congo red is broken down by Bacillus species, the Haldane 
model and the Monod model were applied, and it was revealed 
that the Haldane model was the superior of the two. The Monod 
model, on the other hand, was shown to be less accurate [36]. The 
Haldane model was also utilized as the best model for the bio-
decolorization of the textile azo dye Reactive Red 2 by a mixed, 
mesophilic methanogenic culture [13] and the bio-degradation of 
Tectilon Yellow 2G (TY2G) by a Pseudomonas putida mutant 
[37].  
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In the biodegradation of Methyl Orange (MO) with 
tolerance at concentrations of up to 100 mg/L by the salt-tolerant 
Bacillus sp. strain CICC 23870 the biodegradation was estimated 
by the Haldane model as the sole model due to the popularity of 
this model. The average specific decolorization rate of free cell 
system was 26.30 mg/g/h at an initial MO concentration of 32.7 
mg/L [38].  
 

Because it has been established that the Haldane model is 
more accurate when compared to other models, this 
generalization regarding the employment of the Haldane model 
in published studies must be treated with the utmost caution. For 
example, in addition to the Haldane model, which is the one that 
is referenced the vast majority of the time, there is also the model 
that has been developed by others [39], several other different 
models have been found to be optimal such as Luong [40,41] and 
Edward [42].  

 
As a direct consequence of this, the utilization of 

comprehensive models that are easily accessible could 
consequently replace the use of the Haldane in certain instances. 
Because it is the only way to truly fit these other models to the 
data that is available for either the growth or degradation rate, the 
exclusive utilization of the Haldane model must not be used 
freely because it is the only way that it can be accomplished. This 
is due to the fact that it is the only way to truly fit these other 
models to the data that is available. Following that, the proper 
statistical analysis needs to be carried out. 
 
CONCLUSION 
 
Because of its antibacterial, antifungal, and antiparasitic 
properties, basic violet 3 is an essential dye for the prevention 
and treatment of fish diseases. The use of microorganisms for the 
purpose of BV bioremediation is becoming increasingly 
common. A number of secondary models, including Monod, 
Haldane, Teissier, Aiba, Yano and Koga, Hans-Levenspiel, 
Webb, and the Luong model, can be used to estimate the rate of 
decolorization, which is frequently blocked at high 
concentrations of toxicant. These models can be used to simulate 
the process. The findings indicate that the majority of the models, 
with the exception of Monod and Hans -Levenspiel, are capable 
of providing an adequate fit to the experimental data. The Tessier 
model was determined to be the most accurate and have the least 
amount of bias based on statistical analysis. It had the highest 
value for the adjusted coefficient of determination, the lowest 
values for RMSE, AICc, HQC, and BIC, and the value that was 
closest to 1.0 for accuracy and bias factors. In the normality tests, 
the Teissier model performed as expected, indicating that it is 
suitable for use in determining how the experimental data should 
be modeled. The results of the normality tests, which included 
the Kolmogorov-Smirnov test, the Wilks-Shapiro test, and the 
D'Agostino-Pearson omnibus K2 test, indicate that the model 
passes the normality tests with a p value greater than 0.05 for 
each of the normality tests that were carried out. The 
experimental data obtained indicates that BV is toxic and slows 
down the rate of decolourisation at higher concentrations. The 
maximum BV specific biodegradation rate (qmax), half-saturation 
concentration (KS), half inhibition concentration (Ki) was 0.145 
h-1, 0.408 mg/L and 73.205 mg/L, respectively. The parameters 
obtained from this exercise can be utilized to model the 
bioremediation of BV in the future. 
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