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INTRODUCTION 
 
High quantities of copper, a trace metal (needed by humans in 
levels of 1 to 100 mg per day), are located in the brain, liver, and 
kidney. However, more than half of the copper in the body is 
found in bone and muscle due to its large sizes. Ceruloplasmin is 
a liver protein that transfers copper linked to ceruloplasmin to the 
rest of the body. About half of the copper in the body is 
eliminated in the bile, with the other half leaving the body 
through various gastrointestinal secretions. As a result, copper 
homeostasis is mostly controlled by the digestive system. 
Numerous proteins rely on copper as a catalytic cofactor in redox 
chemistry, yet an excess of free copper ions can be harmful to the 
body [1–5]. The quantity of copper in a cell is controlled by a 
finely tuned balancing act between copper ion absorption and 

outflow. Oxidative stress, DNA damage, and a decrease in cell 
proliferation are all brought on by copper overload. Copper 
sulfate is harmful if more than 1 gram is ingested. When a 
metabolic disorder is inherited, the resulting copper toxicosis is 
called primary copper toxicosis, but when the disorder is the 
consequence of excessive copper consumption, increased copper 
absorption, or decreased copper excretion, the disorder is called 
secondary copper toxicosis. Consuming acidic meals cooked on 
uncoated copper cookware or being exposed to excess copper in 
drinking water or other environmental sources can lead to 
copperiedus (copper toxicity)  [1–11]. 
 

Consumption of polluted water, use of copper salt-
containing topical creams for burn treatments, preparation of 
acidic foods in uncoated copper cookware, and attempted suicide 
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 ABSTRACT 
In ruminants, even trace amounts of molybdenum can be lethal. In areas with high pollution, 
molybdenum levels in soil and mine tailings can exceed 20,000 ppm. Bioremediation of 
molybdenum can be challenging when toxic copper is also present. This research presents a novel 
approach using dialysis tubing and the molybdenum-reducing activity of Bacillus sp. strain Neni-
8 for molybdenum removal from aqueous solutions. Molybdenum blue (Mo-blue), produced 
during enzymatic reduction, is insoluble in dialysis tubing and this can be a twofold advantage 
as a method of removal and as a method to protect bacterial cells from heavy metal inhibition, 
especially copper. In this experiment, we assess the toxicity-shielding effect of dialysis tubing 
for molybdenum reduction to Mo-blue by this bacterium in the presence of copper. As the 
concentrations of copper were increased, both free and immobilized cells were strongly inhibited. 
Modelling using the dissociation−one-phase exponential decay model gave an IC50 value for the 
immobilized form of 0.1107 mg/L (95% confidence interval from 0.073 to 0.217 while the IC50 
value for the free cell system was 0.023 mg/L (95% C.I. from 0.019 to 0.028). Since the 
confidence interval for the IC50 values did not overlap, the immobilized system gave better 
protection from copper than the free cell system. Toxicity to free cells was higher than toxicity 
to cells trapped in dialysis tubes, suggesting that trapping Mo-reducing cells may be an effective 
strategy for the bioremediation of water or wastewater contaminated with multiple heavy metals. 
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(the fatal amount of swallowed copper is 0.015 grams) are 
common causes of copper poisoning (10 to 20 g). In many 
countries, copper sulfate may be purchased without a 
prescription. It has several practical uses, including as a pesticide, 
in the tanning industry, and for the production of leather and 
homemade glue. Accidental poisonings from copper sulfate 
crystals are common because youngsters are drawn to their 
brilliant blue hue. [6] An abnormality in the gene that codes for 
the copper-ATPase enzyme results in Wilson disease, an 
autosomal recessive ailment characterized by a buildup of copper 
in the cells [1–11]. Eighty-five percent to ninety-five percent of 
the copper in the blood is attached to ceruloplasmin, while the 
remaining five percent or so is "free," loosely connected to 
albumin and other tiny molecules [12,13]. 
 

Molybdenum and other heavy metal pollution levels have 
been assessed on a global scale. One example of Japanese marine 
pollution is the discovery of hundreds of parts per billion (ppb) 
of molybdenum in Tokyo Bay. It has been proven that ruminants, 
such as cows, can experience scouring in areas contaminated with 
molybdenum at levels as low as a few parts per million, despite 
the fact that people are not directly exposed to the toxicity of 
molybdenum. Grassland in the Tyrol region of Austria has been 
contaminated with molybdenum at levels of up to hundreds of 
parts per million. This is the site of the first documented case of 
molybdenum bioremediation by the use of microbes and plants 
[14–22].  

 
Molybdenite in Nigeria can only be found in Plateau state, 

Nigeria, specifically in Kigom, Jos. There has been a lot of 
research on the possibilities of employing microbes to detoxify 
metals. There are several methods for extracting metals. One of 
them is the enzymatic transformation of metals into precipitable 
forms in which they pose less risk. Reducing the toxicity of 
soluble molybdenum can result in the formation of molybdenum 
blue (Mo-blue), a precipitable substance with a beautiful blue 
color [23–33].  

 
Despite this, metal ions, especially copper, are a powerful 

inhibitors of bioremediation, as is the case with many xenobiotics 
[34–36]. As the dialysis tube approach may shield the 
bioreduction process from heavy metals, it is an appealing 
bioremoval technology [37–41]. This work reports for the first 
time the possible application of this approach in safeguarding 
molybdenum removal by a bacterium in the presence of copper. 
 
MATERIALS AND METHODS 
 
Bacterial growth and maintenance of the Mo-reducing Bacillus 
sp. strain Neni-8 was maintained on a solid agar of low phosphate 
(2.9 mM phosphate) medium (pH 7.0) consisting of (w/v%) 
sucrose (1%), (NH4)2SO4 (0.3%), MgSO47H2O (0.05%), NaCl 
(0.5%), yeast extract (0.05%), Na2MoO42H2O (0.726 %) and 
Na2HPO4 (0.073%). Sucrose needs to be autoclaved 
independently. Similar conditions to those used for solid-phase 
growth are employed for liquid-phase growth; however, a high 
phosphate medium (containing 100 mM phosphate) is used 
(HPM). It is simply the phosphate concentration that varies 
between the high and low phosphate medium. Bacillus sp. strain 
Neni-8 was cultured in 5 L of HPM in two 5 L conical flasks at 
30 oC with an orbital shaker for 48 hours to facilitate a large-scale 
cultivation (100 rpm, Kubota). Molybdenum blue formation in 
the medium was evaluated at 865 nm. The specific extinction 
coefficient is 16.7 mM.-1.cm-1 at 865 nm [31,42].  
 

 
 

Cells were harvested by centrifugation at 15,000 ×g for 10 
minutes and the pellet was resuspended in the low phosphate 
solution to an absorbance at 600 nm of approximately 1.00. A 10 
mL bacterial suspension was cultured in 100 mL of sterile LPM 
medium (pH 7.0) with varying concentrations of copper (AAS 
Merck 1000 mg/L stock standard solution) and incubated 
statically at 30°C in dialysis tubing pre-heated for 10 minutes. 1 
mL aliquots were taken at regular intervals, centrifuged at 15,000 
×g for 15 minutes, and absorbance was measured at 865 nm. 
Three trials were conducted. 
 
Modelling of copper inhibition 
The inhibitory effects of copper to Mo-reduction by the 
bacterium were modelled according to the dissociation−one 
phase exponential decay. Fitting of the curve was carried out 
using the CurveExpert software (v1.6). 
 
RESULTS AND DISCUSSION 
 
Metal toxicity is typically attributed to metal ions' strong binding 
to the sulfhydryl (-SH) groups of enzymes involved in vital 
microbial metabolic processes. Metals can interfere with 
pollutant biodegradation and remediation in two ways: by 
interacting with enzymes specifically involved in the process 
(such pollutant-specific oxygenases or metal-reducing enzyme), 
or by interacting with enzymes involved in general metabolism. 
In both cases, the ionic form of the metal is responsible for the 
inhibition. This indicates that ionic species concentration, and not 
only total or even total soluble metal concentration, is crucial in 
determining metal toxicity (which may include metal-organic 
complexes that are not capable of binding to enzymes). The 
relevant metal concentration is thus that which may bind to 
enzymes and so inhibit microbial action. Despite the significance 
of the idea of bioavailable metal, it is challenging to evaluate 
bioavailable metal since it changes with both environment and 
organism [23,43,44]. 
 

Several methods exist for completing biodegradation tasks 
in the presence of heavy metal inhibitors. If a main bacterial 
degrader is already present, adding a metal-resistant bacterium 
can speed up the breakdown process. One investigation using soil 
microcosms with cadmium-contaminated soil spiked with a 
cadmium-resistant Pseudomonas sp. H1 strain that accumulates 
cadmium intracellularly and a 2,4-D-degrading bacterium. The 
findings demonstrate that inoculating with metal-resistant 
bacteria that decrease bioavailable metal concentrations through 
sequestration would promote greater biodegradation in the 
presence of a hazardous metal [45].  

 
Metal bioavailability and mobility can be decreased by 

adding treatment additives to metal-contaminated areas, such as 
calcium carbonate, phosphate, cement, manganese oxide, and 
magnesium hydroxide [46]. Including clay minerals is still 
another option. Clay minerals have been used to lower metal 
bioavailability and toxicity. There was a significant decrease in 
cadmium's toxicity to yeasts, bacteria, and an actinomycete when 
kaolinite (1-20%) or montmorillonite (1-5%) was added to an 
agar medium containing the metal [47]. Similarly, Kamel (1986) 
found that the toxicity of 150 mg total cadmium/L to 
Streptomyces bottropensis may be mitigated by adding 3 percent 
bentonite and vermiculite to the solution. Kaolinite, like the other 
clays, decreased cadmium toxicity, although at a higher 
concentration (6 percent vs. 3 percent) and with less protection 
[48].  
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The use of immobilized bacteria to combat metal toxicity 
[37–41] is another avenue. The presence of reducing agents may 
be detected with great precision using Mo-blue. Molybdate (and 
molybdophosphate) may be reduced to Mo-blue by a wide 
variety of chemical and inorganic reducing agents. Therefore, it 
is unclear whether the reduction is enzymatic or the result of 
bioreductants generated by the cells. It's also possible that both 
processes are occurring concurrently, adding to the total Mo-
reducing activity. The use of dialysis tubing has been 
demonstrated as a potential way of differentiation in this context 
[38]. The molybdenum blue product's colloidal feature is used in 
the molybdenum removal procedure from water. 

 
Copper showed strong inhibition towards both free and 

entrapped cells with a significantly higher inhibition (p<0.05) in 
the free cells system (Fig. 1). As the concentrations of copper 
were increased, both free and immobilized cells were strongly 
inhibited. Modelling using the dissociation−one phase 
exponential decay (Fig. 2) model gave an IC50 value for the 
immobilized form of 0.1107 mg/L (95% confidence interval from 
0.073 to 0.217 while the IC50 value for the free cell system was 
0.023 mg/L (95% C.I. from 0.019 to 0.028). Since the confidence 
interval for the IC50 values did not overlap, the immobilized 
system gave better protection from copper than the free cell 
system. 
 
 

 
 
Fig. 1. The effect of increasing concentration of copper to molybdenum 
blue reduction by Bacillus sp. strain Neni-8 in the free-() and 
immobilized () systems. Data indicates mean standard deviation of 
triplicates. 
 

 
 
Fig. 2. Modelling the effect of increasing concentration of copper to 
molybdenum blue reduction by Bacillus sp. strain Neni-8 in the in the 
free-() and immobilized () systems using the dissociation−one phase 
exponential decay (solid curve). Data indicates mean standard deviation 
of triplicates. 
 

The attenuated effects of heavy metals toxicity to enzymatic 
molybdenum reduction are likely due to a combination of factors, 
including diffusion retardation by the dialysis tubing, adsorption 
of heavy metals to the cellulose tubings, and adsorption to the 
negatively charged precipitated Mo-blue mass on the cells' 
surface. Immobilizing or trapping an enzyme or cell can increase 
its stability and efficiency. Heavy metal resistance is a nice 
bonus.  

 
Yet, the majority of Mo-reducing bacteria identified are 

sensitive to copper concentrations of less than 1 mg/L, indicating 
toxicity of copper to the reduction process, which is a common 
occurrence in many bioremediations works [49–56]. According 
to the findings of this study, the resistance to copper can be 
improved in the entrapped form. Alginate, chitosan, and 
polyacrylamide are only a few of the potential immobilization or 
entrapment matrices that may be explored in the future to 
evaluate their resistance to heavy metals and their effectiveness 
of reduction. 
 
CONCLUSION 
 
We come to the conclusion that the dialysis tubing method has 
the potential to be utilized as a bioremediation tool, in particular 
for the removal of molybdenum from wastewater effluents and 
pretreatment systems when poisonous copper is present. The 
removal rate, which would be useful for businesses whose waste 
contains high concentrations of molybdenum, such as the 
pigment and dye industries and molybdenum mine tailing 
effluents co-contaminated with copper, would indicate an 
effective removal system. This would be beneficial for these 
types of industries. The combined protective effects of dialysis 
tubing and precipitated mass on the cell surface as a reaction to 
copper exposure might be the subject of study that will be 
conducted in the future. 
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