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INTRODUCTION 
 
Since 2005, commercial polyacrylamides are frequently 
contaminated by the poisonous monomer of acrylamide, a 
situation that has had a significant impact on our food supply 
chain. Agricultural land is polluted with acrylamides because of 
the 30% concentration of polyacrylamide in the Roundup 
herbicide. This issue, which needs to be addressed and remedied, 

can only be done so by the biological remediation of acrylamide 
[1]. Spencer and Schaumburg [2] found that acrylamide exposure 
caused cancer in laboratory animals, but it is unclear whether or 
not this is also the case in humans. During all stages of the 
spermatogenic process in mice, acrylamide was found to bind to 
DNA and mouse protamine, leading researchers to conclude that 
it is responsible for genetic damage [3]. Studies on the effects of 
acrylamide on rats have shown that it can cause a variety of 
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 ABSTRACT 
Acrylamide is often used in soil stabilization works. It is a neurotoxin and leachate from such 
stabilization works contaminate soils all around the world. E. cloacae strain UPM2021a which 
had been previously isolated and demonstrated the ability to degrade acrylamide was further 
studied for its critical parameters contributing to the optimum growth of acrylamide. The Box-
Behnken design was utilized in optimizing the three previously identified significant components 
(pH, incubation time and acrylamide concentration). Of the three factors, acrylamide and pH 
were the significant factors. The response surface plot exhibited evidence of interactions. 
Predicted optimal conditions were determined using the "Numerical Optimisation" toolbox of the 
Design Expert software. Two optimal conditions were tested.  The model predicted a maximum 
growth of 10.686 (95% C.I., 10.458 to 10.913) which was verified through experimental results 
with a growth of 11.257 (95% C.I., 11.051 to 11.462) with the actual results being near to the 
predicted values but was significantly higher than the predicted values. The second numerical 
optimization gave a solution with a predicted maximum growth of 9.305 log CFU/mL (95% C.I. 
from 9.011 to 9.614) which was verified through experimental results with a growth of 9.978 log 
CFU/mL (95% C.I. from 9.830 to 10.126) with the actual results were also significantly higher 
than the predicted values. This means that other methods which employ more runs such as CCD 
or a different optimization approach such as Artificial Neural Network may be employed in the 
future to close the difference between the model predicted and actual experimental values. 
Despite this, the RSM exercise gave far better growth on acrylamide than OFAT with a higher 
response of about 2 log CFU/mL unit indicating the utility of RSM over OFAT in the 
optimization of growth of this bacterium on acrylamide.  
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negative outcomes, including an increase in perinatal mortality, 
mutagenicity, clastogenicity, malignancies related to the 
endocrine system, and toxicity to male reproductive function [4]. 
Scientists have found that Salmonella TA100 and TA98 may be 
mutagenic when exposed to acrylamide (Yang et al., 2015).  
 

The bone marrow of mice given an intraperitoneal injection 
of acrylamide at a dosage of 50 mg/kg showed an increase in 
chromosomal abnormalities after drug delivery. Lymphocytes 
from mice given acrylamide intraperitoneally at doses up to 125 
mg/kg showed no significant increase in chromosomal 
abnormalities. This was observed when acrylamide was injected 
directly into the abdominal cavity [6]. 
 

Histological alterations in the seminiferous tubules caused 
by acrylamide also have an effect on the reproductive systems of 
male rats. The chemical is responsible for these histological 
changes. When inhaled or absorbed through the skin, acrylamide 
may create a burning sensation or rash. Something is amiss with 
the nervous system if you sweat excessively, feel lethargic, 
and/or have trembling in your tongue [2]. Due to its high-water 
solubility, acrylamide can be absorbed through the respiratory 
tract, the digestive system, the skin, and the placental barrier.  

 
Acrylamides adduct levels in hemoglobin can be used as a 

proxy for the amount of acrylamide the general public is exposed 
to on the job. The research showed that 41 workers in an 
acrylamide production facility had problems with the biomarker 
haemoglobin adducts, which indicates neurotoxicity. An increase 
in haemoglobin adducts was found in workers at an acrylamide 
factory in China, suggesting that they were exposed to very high 
concentrations of the chemical [7]. Many cases of acute 
acrylamide poisoning have been reported in Japan as a result of 
acrylamide pollution in the country's water supply. There have 
been several reports of this happening to different persons.  

 
A well that had been contaminated by a grouting operation 

at a depth of 2.5 meters was found to have an acrylamide content 
as high as 400 mg acrylamide/L, as discovered by Igisu et al. [8]. 
The results indicated that truncal ataxia and disorientation were 
among the symptoms experienced by the five participants who 
drank the contaminated water. These signs and symptoms are 
thought to be the result of acrylamide poisoning brought on by 
ingesting water. Since removing acrylamide using 
physicochemical methods is complicated and will be more 
expensive in some cases, such as in soil, the use of 
microorganisms for acrylamide remediation is gaining attention. 
Yeasts like Rhodotorula sp. [9], fungi like Aspergillus oryzae 
[10], and bacteria like E. coli [11-20] are among the microbes 
known to be able to use acrylamide as a source of energy. 
 

Experiment planning in fundamental research is often done 
on an "intuitive" level. Biology experiments have traditionally 
been done "one factor at a time" (OFAT). In this technique, the 
output of the entity under study is examined while all other 
elements and variables are held constant. Though this approach 
may help researchers uncover important "major impacts," the 
interactions between its components will inevitably lead to 
suboptimum results. Due to the complexity of the process, a wide 
variety of inputs must be controlled for the best results. Although 
various studies on process optimization have used OFAT to 
improve responsiveness, optimizing more complex procedures 
would require an understanding of the linkages between 
components. For OFAT, one axis is optimized before moving on 
to the next.  

 

The global maximum that maximizes the output variable 
may be determined if, by some stroke of luck, the research was 
started reasonably in the first place, although this is extremely 
unlikely [21-25]. A more rigorous strategy for analyzing 
experimental point placement and reaction, the response surface 
methodology (RSM). When there are few variables at play, a 
Taguchi or full factorial design is preferable. The response 
surface technique is useful when multiple factors influence a 
reaction or design. 
 

Selecting an acceptable experimental design, identifying the 
efficient levels/optimum points of several independent 
parameters, forecasting and testing model equations, and 
generating contour plots and response surfaces are only some of 
the goals of the response surface method (RSM) [26]. Cyanide 
[27], phenol [28], caffeine [29], hexavalent chromium and 
molybdenum reduction to a less hazardous form [30], and other 
biological processes optimizations [31-36] have all benefited 
from RSM's usage to improve biodegradation, biotransformation, 
and bioremediation.  

 
Using mathematical and statistical programs like Design 

Expert® and MATLAB®, RSM determines the optimal yield 
within a predetermined process range. In all that it does, RSM 
strives to maximize output in light of available means. Visual 2-
D and 3-D contour plots of the optimal response show the impact 
of varying the levels of two components and the possibilities for 
interactions by adjusting the values of other parameters to 
achieve the best possible outcome. Visual representations of 
optimal replies are available [37]. Box Behnken (BB) and Central 
Composite Design (CCD) are two well-known optimization 
techniques [38,39]. In this study, the Box-Behnken approach will 
be selected for the optimization of E. cloacae strain UPM2021a 
growth on acrylamide due to a more compact experimental run 
needed compared to the CCD.  
 
MATERIALS AND METHODS 
 
All of the chemical reagents utilized in this investigation were 
employed in the analysis without any further purification. Unless 
specified otherwise, experiments were conducted in triplicate. 
 
Growth and maintenance of acrylamide-degrading 
bacterium 
The bacterium was isolated from a paddy field in Kepala Batas, 
which is located in the state of Penang, Malaysia in 2021. The 
bacterium was grown on Minimal Salts Medium agar that had 
been supplemented with 1 percent glucose (w/v) as the carbon 
source and 0.5 g/L (w/v) of acrylamide as the sole nitrogen 
source. The culture was then shaken at 150 revolutions per 
minute (rpm) for 72 hours at a temperature of 25 degrees Celsius 
(Certomat R, USA).   
 

Minimal salt medium (MSM) for growth was supplemented 
with 0.5 g acrylamide g/L as the sole nitrogen source, glucose 10 
g/L as the carbon source, MgSO4·7H2O 0.5 g/L, KH2PO4 6.8 g/L 
(buffering species and source of phosphorous), FeSO4·H2O 0.005 
g/L and 0.1 mL of trace elements [8]. The presence of phosphate 
in the medium functions as a buffer system, keeping the pH 
within the range of 5.8 to 7.8 all the time. During the sterilization 
process, the only source of nitrogen that was used was 
acrylamide, and the PTFE syringe filters that were utilized had a 
pore size of 0.45 microns. Samples of one millilitre each were 
successively diluted in sterile tap water with suitable dilutions 
(0.5 mL) plated on nutrient agar in order to assess the number of 
bacteria that were present. 
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Optimization study using RSM  
RSM is a statistical technique used to develop and improve 
optimization processes to achieve optimal response.[17] In this 
study, CCD was used as RSM, which is based on three steps such 
as first, designing and experimental setup; second, response 
surface modelling through regression; and third, optimization 
(Du et al., 2010). The relationship and interrelationship between 
input variables and the experimental response variable were 
determined by fitting a second-order polynomial equation. The 
equation is given as: 

y = β0 + �βi

k

i=1

xi + �βiixii2
k

i=1

+ ��βijxixj + error
k

j>1

k−1

i=1

 

where, y is the estimated response variable, β0 is the regression 
constant, βi is the linear regression coefficient, βii is the quadratic 
regression coefficient, βij is the bi-linear regression coefficient.  
A three-level, three-factor BBD was employed in this study 
(Table 1). The significant factors from a two-level factorial 
experiment (published elsewhere) were utilized in this study. The 
response was bacterial growth measured as log CFU/mL. To 
reduce fluctuations in observed responses attributable to 
uncontrollable external influences, the BBD created 17 randomly 
ordered experimental runs (Table 2). To assess the influence of 
curvature, the experiments collect data from 12 factorial points 
and 5 centre points located within the experimental zones. 
 
Table 1. Coded and uncoded levels of the independent variables. 
 
Fac-
tor Name Units Min-

imum 
Max-
imum Coded Low Coded 

High Mean Std. 
Dev. 

A Acrylamide g/L 0.3 1.0 -1 ↔ 0.30 +1 ↔ 1.00 0.65 0.2475 
B Incubation Days 2.0 4.0 -1 ↔ 2.00 +1 ↔ 4.00 3.0 0.7071 
C pH  6.5 7.5 -1 ↔ 6.50 +1 ↔ 7.50 7.0 0.3536 

 
Table 2. Experimental design and results of Box-Behnken for the 
growth of the bacterium on acrylamide. 
 

Run 
Factor 1 
A:Acrylamide 
g/L 

Factor 2 
B:Incubation 
Days 

Factor 3 
C:pH 

Response 1 
Growth 
log CFU/mL 

1 0.3 3 7.5 3.153 
2 0.65 3 7 8.436 
3 0.3 3 6.5 3.356 
4 0.3 4 7 3.194 
5 0.65 2 7.5 4.748 
6 1 3 7.5 3.96 
7 0.65 3 7 8.5 
8 0.65 4 7.5 7.664 
9 0.65 2 6.5 7.148 
10 0.65 3 7 9.426 
11 0.3 2 7 3.756 
12 0.65 4 6.5 8.174 
13 1 3 6.5 5.823 
14 1 4 7 4.824 
15 1 2 7 4.724 
16 0.65 3 7 9.292 
17 0.65 3 7 8.862 

 
 

In this study, we present the mean results from experiments 
that were done in triplicates. In order to determine which of these 
parameters were most important, we ran an analysis using Design 
Expert 11.0, Stat-Ease, Inc (trial version) and ANOVA. 
 
 

Statistical Analysis 
Values are means ± SD, in triplicate. One-way analysis of 
variance (with post hoc analysis by Tukey’s test) or Student’s t-
test was used to compare between groups. P-value of < 0.05 was 
considered was significant. 
 
RESULTS 
 
Box-Behnken experimental design with 3 factors, namely; 
incubation period (days), acrylamide concentration (g/L) and pH, 
at 3 different levels (low, medium and high) was employed to 
investigate the effects on bacterial growth in log CFU/mL as the 
main response. The produced experimental runs served as the 
foundation for a series of tests that were carried out. Using the 
Design-Expert program, mathematical models, including linear, 
two-factor interaction, and quadratic, were tested for their ability 
to match the data in order to determine whether or not there was 
a correlation between the various components and the replies. On 
the other hand, it is suggested that BB be represented by a 
quadratic relation, which includes terms that are squared, 
products of two components, linear terms, and an intercept [40], 
and this will be used in this study. The design scheme of variables 
with actual value is illustrated in Table 3, along with 
experimental, predicted values of response and the residuals. 
 
Table 3.  The design scheme of variables with experimental, predicted 
values of response and the residuals. 
 
 

Run 

Factor 1 
A: 
Acrylamide 

g/L 

Factor 2 
B: 
Incubation 

Days 

Factor 3 
C: 
pH 

Response. 
Bacterial 
growth (log 
CFU/mL) 

Predicted 
response. 
log 
CFU/mL 

Residuals 

1 0.3 3 7.5 3.15 3.13 0.02 
2 0.65 3 7 8.44 8.90 -0.47 
3 0.3 3 6.5 3.36 3.55 -0.19 
4 0.3 4 7 3.19 3.66 -0.47 
5 0.65 2 7.5 4.75 5.40 -0.66 
6 1 3 7.5 3.96 3.77 0.19 
7 0.65 3 7 8.50 8.90 -0.40 
8 0.65 4 7.5 7.66 7.22 0.45 
9 0.65 2 6.5 7.15 7.59 -0.45 
10 0.65 3 7 9.43 8.90 0.52 
11 0.3 2 7 3.76 3.12 0.64 
12 0.65 4 6.5 8.17 7.52 0.66 
13 1 3 6.5 5.82 5.84 -0.02 
14 1 4 7 4.82 5.46 -0.64 
15 1 2 7 4.72 4.26 0.47 
16 0.65 3 7 9.29 8.90 0.39 
17 0.65 3 7 8.86 8.90 -0.04 
 

F-test evaluates the statistical significance of the model, 
analysis of variance (ANOVA) and P-value of a selected factor 
is shown in Table 4. The results demonstrated that the model is 
highly significant, which is evident from the F value of 340.53 
with a low P-value of <0.0001. The lack of fit p value was not 
significant which means the model fits well. All factors are 
significant model terms Computing the correlation coefficient 
(R2: 0.962, which is closer to unity) and the adjusted correlation 
coefficient (Adj R2: 0.912), as shown in Table 4, verifies the 
model's reliability. Together, these two coefficients suggest that 
the model accounts for 91.2 percent of the total variation in 
response data. With a difference of >0.2 between them, the 
Predicted R2 and the Adjusted R2 were in relatively not 
reasonable agreement with one another, which may indicate the 
presenc of an outlier(s). Adeq Precision, which in scientific 
terms, refers to the ratio of the amount of signal to the amount of 
noise in an experiment. It is preferable to have a ratio that is 
bigger than 4. A sufficient signal was obtained with a value of 
51.87. Using this paradigm, one may move more easily across 
the design space. The fact that the Lack of Fit p-value was >0.05 
suggests that it is not statistically significant in comparison to the 
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pure error. Since we want the model to be correct, a lack of fit 
that is not too large is preferred. The following coded factors 
(Table 5) and equation in terms of actual components can be used 
to predict growth as the response. The answer for a given level of 
each factor can be predicted using the equation in terms of actual 
factors. Here, the levels for each element should be indicated 
using those very same units. Because the coefficients are scaled 
to suit the units of each element and the intercept is not at the 
centre of the design space, this equation should not be used to 
evaluate the relative impact of each factor. 
 
 
Table 4. ANOVA analysis of the fitted Box-Behnken design. 
 

Source Sum of 
Squares df Mean Square F-value p-

value 
 

Model 84.62 9 9.40 19.49 0.0004 Signi-
ficant 

A-
Acrylamide 4.31 1 4.31 8.93 0.0203  

B-Incubation 1.51 1 1.51 3.14 0.1198  

C-pH 3.10 1 3.10 6.41 0.0391  

AB 0.1096 1 0.1096 0.2271 0.6482  

AC 0.6889 1 0.6889 1.43 0.2710  

BC 0.8930 1 0.8930 1.85 0.2159  

A² 61.43 1 61.43 127.31 < 
0.0001 

 

B² 3.87 1 3.87 8.03 0.0253  

C² 4.30 1 4.30 8.91 0.0204  

Residual 3.38 7 0.4825    

Lack of Fit 2.57 3 0.8569 4.25 0.0981 
not 
signi- 
ficant 

Pure Error 0.8070 4 0.2018    

Cor Total 88.00 16     

Std. Dev. 0.6946  R² 0.9616 
Mean 6.18  Adjusted R² 0.9123 
C.V. % 11.24  Predicted R² 0.5183 

   Adeq Precision 10.853
3 

 
Table 5. The final equation in terms of coded and actual factors. 
 
 
Coded 
growth 
equation 

= 
Actual 
Growth 
equation 

= 

+8.90  -194.96309  
+0.7340 A +57.81310 Acrylamide 
+0.4350 B -0.732757 Incubation 
-0.6220 C +54.05603 pH 
+0.1655 AB +0.472857 Acrylamide * Incubation 
-0.4150 AC -2.37143 Acrylamide * pH 
+0.4725 BC +0.945000 Incubation * pH 
-3.82 A² -31.18041 Acrylamide² 
-0.9591 B² -0.959100 Incubation² 
-1.01 C² -4.04240 pH² 

 
Table 6 shows the estimated coefficients of the components 

that were investigated, together with their respective standard 
errors, confidence limits, and variance inflation factors (VIF). 
The variance inflation factor, or VIF, is a statistic that determines 
how much a lack of orthogonality in the design increases the 
variance of a certain model coefficient.  

 
 

When specifically comparing the standard error for a model 
coefficient in an orthogonal design to the standard error for the 
same model coefficient in a VIF design, the standard error for the 
VIF design is greater by a factor equal to the square root of the 
VIF. As a rule, a VIF of one is desirable since it ensures that the 
coefficient is orthogonal to the other model components; in other 
words, the correlation coefficient is zero. On the other hand, VIFs 
that are greater than ten are cause for worry while VIFs that are 
greater than one hundred are the reason for concern since they 
indicate that coefficients were calculated incorrectly owing to 
multicollinearity, and VIFs that are greater than one thousand are 
the result of severe collinearity. The value of the VIF for all 
variables was found to be 1, which suggests that the regression 
analysis had a significant amount of multicollinearity. The 
construction of each component's confidence limit is what 
determines whether or not the regression coefficient of that factor 
is significant.  
 
Table 6. Coefficients in terms of coded factors. 
 
Factor Coefficient 

Estimate df Standard 
Error 

95% CI 
Low 

95% CI 
High VIF 

Intercept 8.90 1 0.3106 8.17 9.64  

A-Acrylamide 0.7340 1 0.2456 0.1533 1.31 1.0000 
B-Incubation 0.4350 1 0.2456 -0.1457 1.02 1.0000 
C-pH -0.6220 1 0.2456 -1.20 -0.0413 1.0000 
AB 0.1655 1 0.3473 -0.6558 0.9868 1.0000 
AC -0.4150 1 0.3473 -1.24 0.4063 1.0000 
BC 0.4725 1 0.3473 -0.3488 1.29 1.0000 
A² -3.82 1 0.3385 -4.62 -3.02 1.01 
B² -0.9591 1 0.3385 -1.76 -0.1586 1.01 
C² -1.01 1 0.3385 -1.81 -0.2101 1.01 

 
According to the OFAT methodology, these were also key 

contributing parameters in the development of this bacteria on 
acrylamide (the findings of which were reported elsewhere). This 
work was carried out using concentrations of acrylamide that 
were well within the range that has been reported to be tolerated 
by the majority of bacteria that degrade acrylamide. Acrylamide 
concentrations that are greater than 1000 mg/L are normally 
harmful to microorganisms. The propensity of acrylamide to 
produce alkylation products with the proteins found in 
microorganisms is the root of its toxicity. A longer incubation 
period allows for higher growth, and an incubation time ranging 
from two to five days for optimal development has been recorded 
in several acrylamide-degrading microorganisms. Therefore, the 
outcomes of incubation time are something that should be 
predicted. The majority of microorganisms that degrade 
acrylamide thrive in circumstances that are close to neutral, 
which is consistent with the findings of our study and the patterns 
that have been found in the published literature. 
 

The perturbation plot (Fig. 1) of the model exhibits the 
comparative effect of all the operational parameters at a 
particular point in the design space. From the plot, it can be 
observed that factor A (pH) has the steepest curvature. The 
perturbation plot reveals the presence of two-factor interactions 
that implies synergistic effects. Moreover, all quadratic effects 
depicted a significant negative synergistic effect, (A2), (B2) and 
(C2), at p <0.0001, and the contributions were negative meaning 
an increase in these factors was detrimental to the response 
obtained, which is expected as the effect of pH is highly specific 
within a narrow range whilst higher concentrations of acrylamide 
are strong growth inhibitory. 
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Fig. 1. Perturbation plot of operational parameters obtained for the Box-
Behnken design. 
 

In this regard, a half-normal probability plot of the residuals 
(Fig. 2) was constructed and analyzed to ensure the normality 
assumption. All of the internally studentized residuals values 
were found to be within 2 and along a straight line, which 
suggests that there is no requirement for a transformation of the 
response. This was discovered through research. A good fit may 
be seen in the graph that compares the actual experimental results 
to the model's projected values. 
 
 

 
Fig. 2.  Normal probability plot of the residuals. 
 

The Box–Cox plot, which can be shown in Fig. 3, offers 
helpful guidance for choosing the appropriate power law 
transformation based on the value of lambda. Due to the fact that 
the 95% confidence interval has a value of 1 that corresponds to 
the value that was designed into the model, it is not advised that 
any further transformations be made to the observed response in 
order to fit the model. A good agreement can be seen between the 
anticipated predicted values and the experimental or observed 
values when looking at the plot of expected vs real data for the 
Box-Behnken design (Fig. 4). The leverages vs run plot shown 
in Fig. 5 reveals that all of the acquired numerical values fall 
within the usual limits range of 0–1. This indicates the possibility 
that a design point will have an effect on how the model fits. If 

there is an issue with the data point, such as an unanticipated 
error, a high leverage point value of more than one is considered 
"bad" since the error has a significant impact on the model. 
According to the plot of leverages vs runs, there are no data that 
are higher than the average leverage since data that are higher 
than this would impact at least one model parameter. A 
measurement of the response outlier that is equivalent to an 
experimental trial may be obtained from the plot of Cook's 
distances (Fig. 6). Cook's distances are values that cannot be 
negative, and the higher these values are, the more significant an 
observation is. For the majority of researchers, the threshold for 
determining whether or not an observation can be considered 
important is three times the dataset's mean value of Cook's D. 
The values of the Cook's distances are determined to be within a 
value of 1, and this analysis shows the possible presence of 
outliers especially at runs 5, 11, 12 and 14. The comparison of 
residuals to run data, as shown in Fig. 7, reveals no signs of serial 
correlation and hints that the data's features are random by nature. 
 
 

 
 
Fig. 3. Diagnostic plot in the form of Box-Cox plot for the Box-Behnken 
optimization studies. 
 

 
 
Fig. 4. Diagnostic’s plot in the form of the  predicted vs real data to the 
Box-Behnken optimization studies. 
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Fig. 5. Diagnostic plot in the form of the leverage vs runs for the Box-
Behnken optimization studies. 
 

  
Fig. 6. Diagnostic plot in the form of Cook’s distance for the Box-
Behnken optimization studies. 

 
 
Fig. 7. Diagnostic plot in the form of residuals vs runs for the Box-
Behnken optimization studies. 

 
 
It's not always a problem when influential points are brought 

up, but it is important to follow up on observations that are 
marked as extremely influential. A high result on an influence 
measure could indicate a number of different things, including a 
mistake in the data input process or an observation that is not 
typical of the population of interest and so need to be excluded 
from the analysis. During the process of fitting a model, the 
inclusion of one or more data points that are sufficiently 
important might cause coefficient estimations to be thrown off 
and muddle the model's interpretation. In the past, before 
conducting a linear regression, the potential of outliers in a 
dataset would be evaluated using histograms and scatterplots. 
This was done before running the linear regression.  

 
Both approaches to evaluating data points were subjective, 

and there was little way to determine how much influence each 
possible outlier had on the data representing the outcomes. This 
resulted in the development of a number of quantitative metrics, 
such as DFFIT and DFBETA. The DFFFITS algorithm assesses 
how much of an impact each particular example has on the value 
that was anticipated. It is possible to translate it to the distance 
according to Cook. DFFITS, in contrast to Cook's distances, can 
take either a positive or a negative value. When the value is "0," 
the point in question is located precisely on the regression line. 
Leverage is what makes this possible.  

 
Mathematically speaking, it is the difference between the 

expected value with observation and the predicted value without 
observation. DFFITS is a representation of the externally 
studentized residual (ti) that has been exaggerated by high 
leverage points and decreased by low leverage points, as 
demonstrated by the alternative formula. The plots show the 
DFBETAS values (Fig. 8) and DFFITS values (Fig. 9) were 
within the size-adjusted threshold acceptable range with the 
exception of several extreme values, which were runs 5, 11, 12 
and 14 (DFFITS) (Table 2), which can also be seen in the half-
normal probability plot above. However, these values barely 
were above the acceptable range and in overall do not affect the 
reliability of the model as a whole. 
 
 

 
 
Fig. 8. Diagnostic plot in the form of DFBETAS for intercept vs runs for 
the Box-Behnken optimization studies. 
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Fig. 9. Diagnostic plot in the form of DFFITS vs runs for the Box-
Behnken optimization studies. 
 

The model equation that was provided by the Design Expert 
program was used to construct the 3D plots, and they were 
created so that the interaction between the elements could be 
studied. Charting the answer against any two independent 
variables on the Z-axis allowed for the creation of three-
dimensional displays. In the middle of each of these graphs is a 
single variable that remains constant, while the other two 
variables are shown to be changing as the experimental range 
increases. Each figure illustrates the influence of the reciprocal 
interaction that occurs between two substantial independent 
elements, while simultaneously maintaining the status quo for the 
other two components that were investigated. The shape of the 
plot is determined by how they influence growth and how they 
communicate with one another, which are three factors that are 
independent of one another. When pH was held at the midpoint 
(7.0), varying the incubation period and acrylamide 
concentration factors show an elliptical profile indicating a 
relationship of synergistic interaction (Fig. 10a) with the highest 
response of 8.992 log CFU/mL (95% confidence interval from 
8.264 to 9.719) occurring at the predicted acrylamide 
concentration of 0.69 g/L and incubation period of 3.25 days 
(desirability of 0.931). Increasing the acrylamide concentration 
shows an inhibited effect roughly at 0.7 g/L onwards, indicating 
strong inhibition to bacterial growth, which has been reported in 
numerous studies  [11–20,41–47]. The main negative effect of 
acrylamide is due to this compound’s ability to form adducts with 
biomolecules in the cell, inactivating their normal function  [48–
50]. The predicted result was obtained by solving the equation in 
Table 5.  

 
The overall profile indicates a strong inhibition of growth as 

a response at acrylamide concentrations higher than 
approximately 0.7 g/L, which is anticipated due to the toxicity of 
acrylamide at high concentrations to microorganisms in general. 
The incubation period did not increase by much going from day 
2 to day 4 indicating that maximum growth has already been 
reached after day 2 of incubation. This optimum point occurs in 
a region that contains predicted points that will not be 
significantly different from each other (p>0.05) as the confidence 
interval (95%) overlapped. This region occurs between the 
predicted incubation period of 2.1 days onwards to the studied 
maximum period of day 4 and acrylamide concentration of 
between 0.47 and 0.88 g/L (Fig. 10b). The elliptical shape of the 
3D wired frame and contour plot indicates the mutual interaction 
between independent factor was significant response surface 

model [51,52]. Within this bordering region (Fig. 10c), the 95% 
confidence interval of the maximum responses overlapped and 
was deemed not statistically different (p>0.05) [53].  

 
 

 
(a) 
 

 
(b) 
 

 
(c) 
 
Fig. 10. The 3D response surface plots of between the factor incubation 
and acrylamide concentration (a), 95% confidence interval region of 
optimality visualized as 2D- (b) and 3D- (c) contour plots.  
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When the incubation period was held at the midpoint (day 

3), varying the acrylamide concentration and pH show an 
elliptical profile indicating a relationship of synergistic 
interaction (Fig. 11a) with the highest response of 9.05 log 
CFU/mL (95% confidence interval from 8.32 to 9.77) occurring 
at the predicted points of acrylamide concentration of 0.685 g/L 
and pH of 6.84  (desirability of 0.940). This optimum point 
occurs in a region that contains predicted points that will not be 
significantly different from each other (p>0.05) as the confidence 
interval (95%) overlapped. This region occurs between the 
predicted of between 6.5 to 7.4 and acrylamide concentrations 
between onwards to the studied maximum period of day 4 and 
acrylamide concentration of between 0.47 and 0.90 g/L (Fig. 
11b). Within this bordering region (Fig. 11c), the 95% 
confidence interval of the maximum responses overlapped and 
was deemed not statistically different (p>0.05) [53]. 
 

When acrylamide concentration was held at the midpoint 
(0.65 g/L), varying the incubation period and acrylamide 
concentration factors simultaneously show an elliptical profile 
indicating interaction (Fig. 12a). As the pH increases from 6.5 to 
7.5 a lowering of growth response was seen indicating 
unfavourable growth at a higher pH, whilst incubation shows not 
much difference as the period was increased. The highest 
response of 9.02 log CFU/mL (95% confidence interval from 
8.29 to 9.74) occurred at the predicted incubation period of 3.16 
days and pH of 6.89 (desirability of 0.936). This optimum region 
also occurs between the predicted pH of 6.75 to 7.38  and 
incubation periods of  2.09 to 4 days (Fig. 12b). Within this 
bordering region (Fig. 12c), the 95% confidence interval of the 
maximum responses overlapped and was deemed not statistically 
different (p>0.05) [53], meaning any points within this region 
will be similarly optimum statistically (p>0.05). 

 
Verification of BB experimental design of RSM for the 
growth of the bacterium on acrylamide  
Predicted optimal conditions were determined using "Numerical 
Optimisation" toolbox of the Design Expert software. Two 
optimal conditions were tested. The first was for finding the 
optimum growth under the range of factors employed whilst the 
second was to predict the optimum growth at the highest 
acrylamide concentration tolerable, which was 1.0 g/L. The 
predicted value of the dependent variable for both sets of design 
experiments was suggested with different combinations of the 
parameter value. 
 

Table 7 shows the solutions for the verification of the first 
predicted model. The model predicted the maximum growth of  
9.07  (95% C.I., 8.35 to 9.795) which was verified through 
experimental results with a growth of 9.94 log CFU/mL (95% 
C.I., 9.81 to 10.07) with the actual results were near but higher 
than the predicted value. The predicted combination to give the 
desired maximum response based on the requirement of Table 7 
was at an acrylamide concentration of 0.691 g/L, incubation 
period of 3.16 and pH of 6.85. On the other hand, the predicted 
combination to give the desired maximum response based on the 
requirement for the conditions where growth at the highest 
desirable acrylamide concentration is desired as shown in Table 
8 was at an acrylamide concentration of 0.845 g/L, incubation 
period of 3.18 and pH of 6.81. 

 
(a) 
 

 
(b) 

 
(c) 
 
Fig. 11. The 3D response surface plots between the factor pH and 
incubation period  (a), 95% confidence interval region of optimality 
visualized as 2D- (b) and 3D- (c) contour plots.  
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(a) 

 
(b) 

 
(c) 
 
Fig. 12. The 3D response surface plots of between the factor acrylamide 
and pH  (a), 95% confidence interval region of optimality visualized as 
2D- (b) and 3D- (c) contour plots.  
 
  The second numerical optimization gave a solution with a 
predicted maximum growth of 8.338 log CFU/mL (95% C.I. 
from 7.595 to 9.082), which was verified through experimental 
results with a growth of 9.56 log CFU/mL   (95% C.I. from 9.41 

to 9.72) with the actual experimental results were also near but 
significantly higher than the predicted values. The predicted 
combination to give the desired maximum response based on the 
requirement of Table 8 was at an acrylamide concentration of 
0.844 g/L, incubation period of 3.18 and pH of 6.81.  
 
Table 7. Suggested parameter for each variable for maximum growth of 
the bacterium on acrylamide based on the Box-Behnken design. 
 
Factor Name Level Low Level High Level Std. Dev. Coding 

A Acrylamide 0.6905 0.3000 1.0000 0.0000 Actual 
B Incubation 3.16 2.00 4.00 0.0000 Actual 
C pH 6.85 6.50 7.50 0.0000 Actual 

 

 
 
Fig. 13. Desirability ramp for optimization for maximum response with 
all factors in range. The desirability value was 0.944. 
 
Table 8. Suggested parameter for each variable for maximum growth of 
the bacterium on maximum acrylamide concentration based on the Box-
Behnken design. 
 
 
Factor Name Level Low Level High Level Std. Dev. Coding 

A Acrylamide 0.8448 0.3000 1.0000 0.0000 Actual 
B Incubation 3.18 2.00 4.00 0.0000 Actual 
C pH 6.81 6.50 7.50 0.0000 Actual 

 
 

 
 
Fig. 14. Desirability ramp for optimization for maximum response with 
the acrylamide usage factor at maximum whilst other factors are in range. 
The desirability value was 0.802. 
 
Table 9. Verification results between experiments and predicted 
response.  
 

RSM target 
solution 

Desira-
bility 

Predicted 
mean 
(95%, 
C.I.) log 
CFU/mL 

Experimental 
verification 
(95%, C.I.) 

Statistical 
significant 
Difference between 
predicted and 
experiment 

All factors 
within range, 
Maximum 
growth 

0.944 9.07  (8.35 
to 9.795) 

9.94 (9.81 to 
10.07)  

Significant  
Difference (p<0.05) 

Acrylamide 
concentration 
maximum,  
Maximum 
growth 

0.802 8.338 
(7.595 to 
9.082) 

9.56 (9.41 to 
9.72)  

Difference is 
significant (p<0.05) 
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Comparison of optimisation parameters between OFAT and 
RSM  
In comparison, results from OFAT (published elsewhere) and 
RSM were gathered and compared to each other (Table 10). A 
statistically better and higher response of about 2 log CFU/mL 
was achieved through RSM optimisation. 
 
Table 10. Comparison of optimum conditions and results obtained 
between OFAT and RSM for growth of the bacterium on acrylamide. 
 
 OFAT RSM 

Factors Optimum 
value 

Max 
growth (log 
CFU/mL) 

Optimum 
value 

Max 
growth 
(log 
CFU/mL) 

pH 6.5 to 7.5 7.99 6.85 9.94 
Incubation period 
(d) 3  3.16  

Acrylamide (g/L) 0.3 to 1.0  0.691  
 

When compared to CCD designs, BB designs often feature 
fewer design points, and as a result, they are easier on the wallet 
to maintain and operate when resources are few [54]. The Box-
Behnken design will never have more than three levels per factor, 
in contrast to the CCD, which can have as many as five levels per 
factor [55]. In a Box-Behnken design, the design points are 
located at combinations of the variables that represent the low, 
high, and midpoints. For example, if the experiment's operating 
temperature ranges from 10 to 60 degrees Celsius, the lowest 
temperature point will be 10 degrees Celsius and the highest 
temperature point will be 60 degrees Celsius, with 30 degrees 
Celsius serving as the midway. Box-Behnken does not include a 
limit breaker, also known as an extreme setting, therefore in 
contrast to CCD, the minimum temperature will not dip below 10 
°C, and the maximum temperature will not rise over 60 °C. When 
we want our goal scale to stay inside the safe range because of 
physical or conceptual limits, this feature is quite crucial (e.g., 
when the temperature starts at zero with no negative range).  

 
Central composite designs are a type of complete fractional 

factorial design that includes centre points and is complemented 
by a collection of axial points [55]. As a result, both its upper and 
lower limits always fall outside of the limit range of the target 
scale. Box and Behnken (BB) came up with the idea of an 
incomplete factorial design with three levels as a time-saving 
replacement for the labour-intensive full factorial design [40]. 
Polynomials of the second order are required to be utilized in the 
modelling process in order to effectively capture linear, 
quadratic, and interaction effects. Box and Behnken came up 
with this workable concept in order to cut down on the number 
of tests that were necessary, particularly in the process of fitting 
quadratic models [40]. +1, 0 and -1 are the three levels of factorial 
designs that are used for constructing experiment matrices. In 
order to get the desired level of accuracy in the end product, the 
core point has been replicated several times. There is not an 
experimental point in this design at which all of the components 
have their most extreme values. This capability could come in 
handy during trials in which unfavourable occurrences might 
take place as a result of harsh conditions.  

 
In terms of labour efficiency, the Basic Block Design (BB) 

is only slightly superior to the Central Composite Design (CCD), 
but it is noticeably superior to the Full Factorial Design (FFD) 
[52]. The BB has just two key limitations: the number of 
experimental components must be equal to or more than three, 
and the BB should not be used to fit equations other than second-

order polynomials. Both of these requirements must be met for 
the BB to be valid [52].  
 
CONCLUSION 
 
The Box-Behnken design was adopted in the optimisation of 
three factors influencing the growth of the bacterium on 
acrylamide. These factors include pH, incubation time and 
acrylamide concentration. The important contributing factors or 
parameters were analysed using ANOVA, perturbation plots and 
other diagnostic plots. The diagnostic plots such as half-normal, 
Cook’s distance, residual vs runs, leverage vs runs, Box-Cox, 
DFFITS, DFBETAS all supported the model with the exception 
of several extreme values, which were runs 5, 11, 12 and 14 
(DFFITS and Cook’s distance). Remedies for these outliers in 
future works include running the experiments in blocks or the 
outright removal of these outliers. Predicted optimal conditions 
were determined for finding the optimum growth under the range 
of factors employed and to predict the optimum, which was 1 g/L. 
Predicted optimal conditions were determined using "Numerical 
Optimisation" toolbox of the Design Expert software. Two 
optimal conditions were tested. The first was for finding the 
optimum growth under the range of factors employed whilst the 
second was to predict the optimum growth at the highest 
acrylamide concentration tolerable, which was 1 g/L. In both 
verification experiments, the actual results were near the 
predicted values but were significantly higher than the predicted 
values. This means that other methods which employ more rus 
such as CCD or a different optimization approach such as 
Artificial Neural Network may be employed in the future to close 
the difference between the model-predicted values and actual 
experimental values. Despite this, the RSM exercise gave far 
better growth on acrylamide than OFAT, indicating the utility of 
RSM over OFAT in the optimization of growth on acrylamide.  
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