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INTRODUCTION 
 
Heavy metals are necessary for the biological processes of plants 
and animals, but at high quantities, they can disrupt metabolic 
reactions in organisms' systems. Toxic heavy metals, such as 
molybdenum, which is beneficial to plants, can impair plant 
development by lowering photosynthetic activities, plant mineral 
nutrition, and necessary enzyme function [1]. Metals are used in 
a wide range of industrial processes. As a result, many Malaysian 
environmental systems have been contaminated with heavy 
metals [2]. Due to indiscriminate dumping and unlawful 
discharge, heavy metal pollution has become a public health 
concern in Malaysia [3]. Toxic heavy metals, such as 
molybdenum, can build up in the body after being absorbed in 
contaminated food and pose a health danger to living organisms 
[1]. Molybdenum is a heavy metal with a wide range of industrial 
applications. It's a dangerous contaminant, with thousands of 
parts per million levels found in soils and aquatic bodies [2] . 
Molybdenum has also been shown to suppress spermatogenesis 
in drosophila and fish [4]. Molybdenum is a common metal that 
is frequently contaminated by mining operations and human 
sources. Molybdenum is becoming a global contaminant at an 
alarming rate. Its contamination levels have been measured in 
water and soils across the world, including Terengganu in 

Malaysia, Tokyo Bay, Tyrol in Austria, and the Black Sea, where 
molybdenum levels have reached dangerously high levels 
[3,5,6]. It is non-toxic to humans; however, it is lethal to 
ruminants at concentrations of many parts per million [5].  
Molybdenum is used in the production of steel, corrosion-
resistant steel components, engine anti-freeze additives, and 
molybdenum disulfide in lubricants, among other things. The 
usage of molybdenum in the industry has resulted in several 
examples of soil and water contamination [7]. In general, the 
reduction mechanism in molybdenum-reducing bacteria has been 
shown to involve an enzymatic reaction rather than a chemical 
one.  
 

There have been reports of molybdenum-reducing bacteria 
from agricultural soil, with a second molybdenum-reducing 
bacterium capable of degrading pollutant [4]. Molybdenum 
reduction to molybdenum blue is a mechanism related to 
bacterial growth and, like bacterial growth, exposes a peculiar 
stage in which the true growth rate begins at zero and quickly 
accelerates to a maximum value (max), resulting in a lag period 
(λ) [6]. Microbes have an incredible ability to resist the toxicity 
of heavy metals, which is useful in bioremediation. Ruminants 
are highly poisonous to it, and bioremediation has been reported 
in previous research [5]. Microbes have been responsible for 
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 ABSTRACT 
In this work, kinetic growth models such as Luong, Yano, Teissier-Edward, Aiba, Haldane, 
Monod, Han and Levenspiel were used to model molybdenum blue production from Serratia sp. 
strain DRY5. Based on statistical analyses such as root-mean-square error (RMSE), adjusted 
coefficient of determination (adjR2), bias factor (BF), and accuracy factor (AF), the Monod model 
was chosen as the best. The calculated values for the Monod constants qmax (the maximum 
specific substrate degradation rate (h−1), and Ks (concentration of substrate at the half maximal 
degradation rate (mg/L)) were found to be 3.86 (95% confidence interval of 2.29 to 5.43), and 
43.41 (95% confidence interval of 12.36 to 74.46) respectively. The novel constants discovered 
during the modelling exercise could be used in further secondary modelling. 
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molybdate decrease for over a century. In 1985, E. coli K12 was 
used in the first comprehensive study of molybdate reduction to 
Mo-blue. T. ferrooxidans, Enterobacter cloacae strain 48 (EC 
48), and Serratia marcescens strain Dr.Y6 followed in 1988, 
1993, and 2008 respectively [3,8]. 
 
MATERIALS AND METHODS 
 
Data acquisition 
The graphical data from Fig. 1. of the published work by Shukor 
et al. [6] of Mathematical Modeling of the Molybdenum Blue 
Production from Serratia sp. strain DRY5 was processed using 
the software Webplotdigitizer 2.5 [9], which helps to digitizes the 
scanned figure and has been widely used and acknowledged by 
many researchers because of its precision and reliability 
[3,5,6,10]. CurveExpert Professional software (Version 2.6.5) 
was used to model the data after been processed. 
 
Fitting of the data 
Employing CurveExpert Professional software (Version 2.6.5), 
nonlinear regression using the Marquardt algorithm was utilised 
to fit the bacterial growth curve using multiple growth models 
(Table 1). The algorithm looks for the most efficient way to 
lower the sum of squares between predicted and measured 
values. The sharpest gradient search of the curve between the 
four datum points was used to estimate the growth rate(max), 
while the line crossing the X-axis was used to estimate the lag 
time (λ). The highest growth rate was picked for the modelling 
exercise. 
 
Table 1. Mo-blue production models employed in this research. 
 
Model Equation No. Of 

parameters 
Ref. 

Monod µ𝑚𝑚𝑚𝑚𝑚𝑚  
𝑆𝑆

𝐾𝐾𝑠𝑠 +  𝑆𝑆
 2  [15] 

Haldane µ𝑚𝑚𝑚𝑚𝑚𝑚 
𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2
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 3 [16] 
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Note: 
µmax = maximum cell growth and degradation rate (h-1) 
Ks = Half saturation constant or half velocity constant (% v/v) 
Ki = Inhibition constant (% v/v) 
S = Substrate concentration (% v/v) 
Sm = Maximum concentration of substrate tolerated (% v/v) 
m, n, K = curve parameters 
 
Statistical analysis 
The adjusted determination coefficient (R2), accuracy factor 
(AF), bias factor (BF), root-mean-square error (RMSE), and aicc 
(akaike information criterion) corrected were used to calculate 
the statistically significant difference between the models, as 
previously described [4,11–13]. The first to propose and suggest 
BF and AF were ross and McMeekin [14]. 
 
 

RESULTS AND DISCUSSION 
 
Based on bacterial growth modelling (Figs 1-7), the Monod 
model was found to be the best model, with the lowest RMSE, 
AICc, and adjustedR2 values. The model's AF and BF values 
were similarly excellent, with values close to 1.0. Except for the 
Tessier-Edward model, which shows poorest match (Table 2), 
the coefficients parameters for the Monod model were provided 
in Table 3. 
 
Table 2. Statistical analysis of the various models used in this sturdy. 

Model P RMSE adR2 AICc BF AF 
Luong 4 0.1503 0.952 -37 0.680 1.598 
Yano 4 0.1364 0.959 -40 1.312 1.440 
Tessier-Edward 3 0.4252 -0.941 -11 1.089 1.353 
Aiba 3 0.1551 0.947 -41 0.764 1.460 
Haldane 3 0.1457 0.954 -43 0.707 1.546 
Monod  2  0.1595  0.944  -45  0.692  1.625  
Han and Levenspiel   5 0.1586 0.9454 -29 0.687 1.625 
Note: 
P=number of parameters 

 
 
Table 3. Growth coefficients as predicted by the Monod model. 
 

 µm 
(h-1) 

Ks 
(% v/v) 

Value 3.86 43.41 
Std err 0.7269 14.371 
Range (95% 
confidence) 

2.29 to 5.43 12.36 to 74.46 

 
 

  
 
Fig. 1. Growth of Serratia sp. strain DRY5 modeled using Tessier-
Edward 
 

 
 
Fig. 3. Growth of Serratia sp. strain DRY5 modeled using Han-
levenspiel 
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Fig. 5. Growth of Serratia sp. strain DRY5 modeled using Yano. 
 

 
 
 
Fig. 2. Growth of Serratia sp. strain DRY5 modeled using Haldane 
 
 

 
 
 
Fig. 4. Growth of Serratia sp. strain DRY5 modeled using Aiba. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Fig. 6. Growth of Serratia sp. strain DRY5 modeled using Monod. 
 
 

 
 
Fig. 7. Growth of Serratia sp. strain DRY5 modeled using Luong. 
 
CONCLUSION 
 
In conclusion, based on statistical analyses such as corrected 
AICc (Akaike Information Criterion), bias factor (BF), adjusted 
coefficient of determination (adjR2), and root-mean-square error 
(RMSE), the Monod model was the best model in modelling the 
growth of Serratia sp in the production of Molybdenum Blue). 
Maximum specific growth rate (qmax) and Ks (concentration of 
substrate at half maximal specific growth rate (mg/L) were 
obtained from the fitting exercise, with values of 3.86 (95% 
confidence interval of 2.29 to 5.43) and 43.41 (95% confidence 
interval of 12.36 to 74.46), respectively. Under batch 
experiments, these biologically meaningful coefficients will be 
effective in predicting Serratia sp. strain DRY5 growth 
requirements in the production of Molybdenum Blue and 
therefore heavy metal will be remediated from the environment. 
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