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INTRODUCTION 
 
As a result of their fire-retardant properties, polybrominated 
diphenyl ethers (PBDEs) are commonly used in the industrial 
business. PBDEs are utilised as additives in several sectors, 
including plastics and textiles, where they are mixed with 
polymers to create a new product. Despite this, because they are 
not chemically bonded to the surfaces of plastics or textile goods, 
they have the potential to leach off the surfaces of these items and 
into the environment. PBDEs are widely dispersed in several 
environmental media, including soils, groundwater, groundwater 

sediments, and even the atmosphere, as a result of this discovery. 
A significant health danger to humans arises from the high 
lipotropy of polybrominated diphenyl ethers (PBDEs), which can 
biomagnify in food webs, providing a significant threat to human 
health. Furthermore, due to their aromatic structures and bromide 
substituent groups, some PBDEs are harmful to human health 
and the environment and remain in the environment [1–11]. It is 
necessary to treat industrial wastewaters before releasing them 
into the environment to protect human health and the 
environment from pollution caused by polybrominated diphenyl 
ethers (PBDEs). This is necessary to protect both human health 
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 ABSTRACT 
Numerous papers fail to conduct statistical diagnostics of the nonlinear model that was used, and 
the data may be non-random, which is a need for all parametric statistical evaluation procedures 
that rely on random data. Whenever the diagnostic tests find that the residuals reflect a pattern, 
there is a range of treatments available, such as nonparametric analysis or transferring to a 
different model, which should resolve the issue. To ensure that randomization is satisfied, we 
conduct the Wald–Wolfowitz runs test statistical diagnosis tests. It was decided to conduct this 
study because it was necessary to assess the randomness of the residual for the pseudo-1st order 
kinetic model in the adsorption of the brominated flame retardant 4-bromodiphenyl ether onto 
biochar-immobilized Sphingomonas sp. was carried out using the Wald–Wolfowitz runs test. the 
number of runs was 15, and the predicted number of runs under the premise of randomness was 
8.20, initially suggesting that the residual series had enough runs. The z-value indicates how 
many normal errors the number of runs discovered exceeds the anticipated number of runs, and 
the p-value indicates how severe this z-value is. The significance is the same as with the other 
data on p-values. The null hypothesis that the residuals are random can be rejected if the p-value 
is less than 0.05. However, because the p-value was smaller than 0.05, the null hypothesis was 
dismissed, implying that there is strong evidence of non-randomness of the residues and further 
remedy is needed. 
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and the environment from pollution caused by these compounds. 
Adsorption has been the most widely used method of pollutant 
removal from industrial wastewater in comparison to other 
existing treatment methods. This is owing to the various 
advantages it offers, such as its simplicity, high efficiency, and 
ease of application. One of the most major challenges in the field 
of adsorption is the selection of efficient and cost-effective 
adsorbents, and many different materials have been studied in 
prior research initiatives to solve this problem. At now, 
researchers are concentrating their attention on biochar (a type of 
charcoal created by biomass pyrolysis) as a possible low-cost 
adsorbent for sequestering pollutants and restricting the spread of 
contaminants [11–21]. 

 
With the capacity to restrict biological uptake, storage, and 

absorption of organic pollutants, biochar can reduce the threat to 
an ecosystem's well-being. Four brominated flame retardants 
(BFRs), such as 4-Bromophenyl phenyl ether (4-BE), have been 
used in a variety of consumer and commercial items for many 
years, including apparel and furniture. In recent years, they have 
risen to the rank of a top-priority environmental contaminant on 
a worldwide scale, and they have been found in the tissues of 
nearly everyone who has been examined thus far [22–29].In 
various areas of the world, the chemical 4-Bromophenyl phenyl 
ether has been discovered in raw drinking water, mineral water, 
and river water. The United States Environmental Protection 
Agency (USEPA) advises that the absolute maximum allowable 
level to preserve freshwater aquatic life be 6.2 ug/L to protect 
aquatic life in freshwater. When tested on the aquatic creature 
Daphnia magna (Water flea), it was discovered that the 
concentration that produces 50 per cent mortality (LC50) is 0.36 
mg/L/48 hours at which the organism dies [30]. Research 
utilising activated sludge microorganisms revealed that it should 
not be decreased in any way; nevertheless, a second investigation 
under aerobic conditions revealed that it degrades at extremely 
low concentrations. 

 
It is important to accurately assign the kinetics and 

isotherms of 4-BDE biosorption to have a complete 
understanding of the process of biosorption. This is especially 
true when it comes to the research of endocrine-disrupting 
substances. When linearization is used to smooth out a nonlinear 
curve, the error structure of the data is disturbed, as is the case in 
this example. As a result, evaluating the uncertainty of the kinetic 
parameters, which are often given as a 95 per cent confidence 
interval range, becomes more difficult. In addition, the 
linearization method leads to the introduction of error into the 
independent variable as a result of the linearization procedure 
[31–36]. Additionally, changes in the weights assigned to each 
data point can occur, which typically results in differences in the 
fitted parameter values between the linear and nonlinear versions 
of the kinetics model when compared to the linear version.  

 
It is important, however, that the residuals of the curve be 

naturally distributed in nonlinear regression, as opposed to the 
typical least square’s technique, which requires the residues to be 
normally distributed in linear regression. More significantly, the 
residuals must be random and have identical variance 
(homoscedastic distribution). The Wald–Wolfowitz runs test is 
used to determine whether or not randomization has been 
achieved [37] statistical diagnosis tests. The subject of this study 
is to test for the randomness of the residual for  

 
 
 
 
 

MATERIALS AND METHODS 
Residual data were acquired from a previously published work 
[38].  
 
Residuals 
Residuals are very important in assessing the health of a curve 
from a particular used model. Mathematically, residual for the ith 
observation in a given data set can be defined as follows (Eqn. 
1); 
 

   (Eqn. 1) 
 
where yi denotes the ith response from a given data set while xi is 
the vector of explanatory variables to each set at the ith 
observation corresponding values in the data set. 
 
Runs test 
The runs test [39] was applied to the regression residuals to detect 
nonrandomness. In a given model, it is feasible to create an 
ordered variance of the curve that is either above or below the 
estimate. The run test contrasts a compound's typically negative 
and optimistic sequence of residues to determine if it is 
hazardous. A noteworthy result is often characterised by a shift 
or mixture of shifts or combinations of shifts between the 
negative and positive residual values. The greatest possible 
percentage is frequently used to denote the number of signs runs. 
The running test evaluates if a big number of sign passes are 
likely, or an insufficient number of sign passes are likely. A 
disproportionate number of run signs may suggest a negative 
serial relationship, but a disproportionate number of runs may 
indicate that residues are connected with the same sign or that 
systemic biases exist. 
 
The test statistic is 
 
H0=  the sequence was produced randomly 
Ha= the sequence was not produced randomly 

      (Eqn. 2) 
Where Z is the test statistic,  is the expected number of runs, R 
is the observed number of runs and sR is the standard deviation 
of the runs. The computation of the values of  and sR (n1 is 
positive while n2 is negative signs) is as follows; 

     (Eqn. 3) 

   (Eqn. 4) 
 
As an example  
Test statistic: Z = 3.0 
Significance level: α = 0.05 
Critical value (upper tail): Z1-α/2 = 1.96 
Critical region: Reject H0 if Z > 1.96 
If the test statistical value (Z) is greater than the critical value, 
then the dismissal of the null hypothesis at the significance stage 
of 0.05 implies that the sequence was generated in a non-random 
manner. 
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RESULTS AND DISCUSSION 
 
From Table 1, the number of runs was 15, and the predicted 
number of runs under the premise of randomness was 8.20, 
initially suggesting that the residual series had enough runs. The 
z-value indicates how many normal errors the number of runs 
discovered exceeds the anticipated number of runs, and the p-
value indicates how severe this z-value is. The significance is the 
same as with the other data on p-values. The null hypothesis that 
the residuals are random can be rejected if the p-value is less than 
0.05. However, because the p-value was smaller than 0.05, the 
null hypothesis was dismissed, implying that there is strong 
evidence of non-randomness of the residues and further remedy 
is needed. 

 
Table 1. Runs test data from the pseudo-1st order Kinetic modelling of 
adsorption of the brominated flame retardant 4-bromodiphenyl ether onto 
biochar-immobilized Sphingomonas sp. 
 

Runs test Residual data set 
R= 5 
n0= 6 
n1= 9 
n= 15 
E(R)= 8.20 
Var(R)= 3.19 
StDev(R)= 1.79 
Z= -1.79 
p-value= 0.037 

  
 
The fitting of a mathematical model may be precisely 

diagnosed scientifically by using residual measurements. 
Residuals are the differences between a mathematical model's 
anticipated and actual quantity values. The main idea is that a 
poor model would show a bigger difference between predicted 
and actual values. The run technique is frequently used in time-
series regression models to test for the presence of 
autocorrelation. Specifically, Monte Carlo simulation 
experiments have revealed that the run-time test causes strikingly 
asymmetrical error rates in the two tails, implying that the use of 
run-time autocorrelation research may not be stable and that the 
Durbin-Watson approach will be the preferred method for 
measuring autocorrelation [40].  

 
Previous similar studies based on looking at the randomness 

of the residuals justify the method used in this study. For instance 
the use of the Baranyi-Roberts model in fitting an algae growth 
curve which shows adequacy in the statistics [41], the Buchanan-
three-phase model used in fitting the growth of Paracoccus sp. 
SKG on acetonitrile [42], and Moraxella sp. B on 
monobromoacetic acid (MBA) [43]. The runs tests on the 
residuals for the Sips and Freundlich models for lead (II) 
absorption by alginate gel bead were found to be sufficient in 
biosorption [44]. There are other examples of the use of the runs 
test of residual in the literature in assessing the health of the 
nonlinear regression [45–49]. 
 
CONCLUSION 
 
In this study, a test for the randomness of the residual for the data 
from the pseudo-1st order Kinetic modelling of adsorption of the 
brominated flame retardant 4-bromodiphenyl ether onto biochar-
immobilized Sphingomonas sp. was carried out using the Wald–
Wolfowitz runs test. The number of runs was 15, and the 
expected number of runs under the premise of randomness was 
8.20, implying that the residual series had sufficient runs. The z-
value represents how many normal mistakes were detected when 
the number of runs discovered exceeded the expected number of 
runs, and the p-value indicates how severe this z-value is. The 

significance is the same as with the other p-value data. If the p-
value is less than 0.05, the null hypothesis that the residuals are 
truly random can be rejected. However, because the p-value was 
less than 0.05, the null hypothesis was rejected, suggesting that 
there is significant evidence of non-randomness of the residues 
and that more intervention is required such as the detection of 
potential outliers. 
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