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INTRODUCTION 
 
The ability to make decisions based on current data analysis is 
critical throughout the whole research and development process. 
Many fluids on are non-Newtonian and, as a result, rely on their 
viscosity to function properly. The method by which non-
Newtonian rheological data is measured, corrected, and analyzed 
is critical in the process of formulating new materials and 
processes [1–4]. When a fluid does not comply with Newton's 
law of viscosity, it is said to be non-Newtonian. The law of 
viscosity says that viscosity should remain constant regardless of 
stress. It is possible for non-Newtonian fluids to transition from 
a liquid to a solid state when they are pushed. During the shaking 
process, ketchup, for example, becomes runnier and therefore 
becomes a non-Newtonian liquid [3,5–9]. When dealing with 
non-Newtonian fluids, the viscosity (progressive deformation 
produced by shear or tensile stresses) is frequently impacted by 
the shear rate or by the history of shear rate. Certain non-

Newtonian fluids with shear-independent viscosity, on the other 
hand, exhibit normal stress differences or other non-Newtonian 
properties, despite their shear-independent viscosity. It is linear, 
passing through the origin, between shear stress and shear rate in 
a Newtonian fluid with the constant of proportionality being the 
coefficient of viscosity as the constant of proportionality. In a 
non-Newtonian fluid, the relationship between shear stress and 
shear rate is not the same as in a Newtonian fluid. It is possible 
that the viscosity of the fluid will vary over time. The conclusion 
is that establishing a consistent coefficient of viscosity is a near-
impossible task [10–14]. 
 

In non-Newtonian and Newtonian fluids, hydrogen bond 
plays a major role in their behavior [15]. As ana example, the 
rheological behavior of the nonnewtonian fluid 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonil) imide 
([bmim][TF2N]) shows a Newtonian plateau followed by a 
second shear thinning where the reduction in viscosity is 
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 ABSTRACT 
Non-Newtonian fluids include a variety of regularly encountered substances such as custard, 
honey, toothpaste, starch suspensions (including starch from corn starch), paint, blood, melted 
butter, and hairspray. For decades, scientists have investigated non-Newtonian fluid behavior and 
produced models to aid in the characterization of non-Newtonian fluid behavior. In addition to 
data interpolation and extrapolation, the outputs of these models may be utilized for material 
classification based on model parameters and aid with the simulation of computational fluid 
dynamics. The Carreau-Yasuda model fitted to the rheological behavior of the non-Newtonian 
fluid1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][TF2N]) was 
checked for its conformation to the normal distribution of its residual using the normality tests , 
which was found not to pass all of the test. After checking for the presence of an outlier using the 
Grubbs ‘test, no outlier was detected. The ROUT method was then applied to detect the presence 
of outliers and three outliers were found and removed. The normality checks performed on the 
cleaned residues gave acceptable results in terms of normality tests and visual conformation of 
the residual, Q-Q plot and overlaid normality curve to the histogram, indicating that the model is 
now appropriate for the data. 
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observed. This behaviour is dependent upon hydrogen bonding 
where the reduction in viscosity (as modelled using the Carreau-
Yasuda) is proportionately to a decrease in the number of 
hydrogen bonds [16].  Like all curve fitting exercise, a nonlinear 
regression like the Carreau-Yasuda model using the least square 
method must obey one of the rules of nonlinear regression, where 
the residuals of the curve must be normally distributed, and the 
residuals must be checked for the presence of outliers [at 95 or 
99 percent confidence levels]. In most cases, normality tests such 
as the Kolmogorov-Smirnov, Wilks-Shapiro, Anderson Darling 
and D'Agostino-Pearson, as well as the Grubb's test, which tests 
for the presence of an outlier, are usually used, and these are the 
objectives of this study. 
 
METHOD 
 
Data for the Rheological flow curve of the ionic liquid as 
modelled using the Carreau-Yasuda model (Figure 6) from a 
published result [16] was extracted using the WebPlotDigitizer 
2.5 software [17] which helps to digitize scanned plots into table 
of data with good enough precision [18]. 
 
Residuals 
Residuals are very important in assessing the health of a curve 
from a particular used model. Mathematically, residual for the ith 
observation in a given data set can be defined as follows (Eqn. 
1); 
 

   (1) 
 
where yi denotes the ith response from a given data set while xi is 
the vector of explanatory variables to each set at the ith 
observation corresponding values in the data set. 
 
Grubbs’ Statistic 
In an average value, a single data point with deformation can lead 
to gross error in the fitting of a nonlinear curve. Therefore, 
searching for an outlier is an integral aspect of curve fitting. The 
Grubbs test is used to evaluate the outlier in the univariate 
environment and the data is normally distributed [19]. The test 
can be applied to the maximal or minimal observed data from a 
Student’s t distribution (Equation 1) and to test for both data 
simultaneously (Equation 2). In this test, reject the point as an 
outlier if the test statistic is greater than the critical value. 
 

 

 

 

 

 
 
 
 (1) 

 

 
(2) 

 
In the event the Grubbs test failed to detect an outlier and 

the residuals are shown to be overwhelmingly nonnormal by 
several normality tests, another outlier detection method, the 
ROUT method is generally recommended.  

 

The ROUT technique begins with a robust type of nonlinear 
regression, which is based on the assumption that the scatter 
follows a Lorentzian distribution. The data is then fit using the 
ROUT method. Once this is accomplished, an adaptive approach 
is used, which gradually gets more resilient as the procedure 
progresses. A modified version of the false discovery rate 
technique to handle multiple comparisons is used to identify 
outliers. Outliers are eliminated from the data, and the data is then 
analysed using a conventional least-squares regression. The 
ROUT technique is so named because it combines robust 
regression with outlier removal, and it is a combination of the 
two methods. If the data being analysed is simulated data with all 
scatter being Gaussian, the technique only finds (falsely) one or 
more outliers in around 1-3 per cent of tests. If the data being 
analysed contains one or more outliers, the ROUT technique 
performs exceptionally well at outlier detection, with an average 
False Discovery Rate of less than 1 per cent [20]. 
 
Normality test 
Residuals from the pseudo-1st order model were subjected to 
four normality tests- Kolmogorov-Smirnov [21,22], Wilks-
Shapiro [23], Anderson-Darling [24] and the D'Agostino-
Pearson omnibus K2 test [25]. These tests require that the number 
of residual samples exceed at least ten. A lower number of 
samples tend to give inconclusive results [26,27]. Using 
graphical and numerical methods are two ways to search for 
normality. The simplest and easiest way to assess the normality 
of data is via graphical methods such as the normal quantile-
quantile (Q-Q) plots, histograms or box plots [28]. The normality 
tests were carried out using the GraphPad Prism® software 
(Version 6.0, GraphPad Software, Inc., USA). 
 
RESULTS AND DISCUSSION 
 
Statistics often used in nonlinear regressions rely on the use of 
residual data, which is the difference between the expected and 
the actual values. Statistical analyses should be done to evaluate 
the adequacy of residues in randomness, do not include outliers, 
obey normality, and do not demonstrate autocorrelation. Usually, 
the greater the discrepancy between the expected and the 
observable values, the less well off the model [29]. Visual 
observation of the residual data (Table 1) shows nonconformity 
to normality. The normality tests also show the same conclusion 
with the residuals not passing all of the normality tests (Table 2). 
 

The Grubbs' test deals with one aspect at a time while the 
ROUT method. Outliers are eliminated and test replicated before 
the test passes without revealing any outliers. As a general rule, 
sample sizes of 6 or less result in biased data sets. The residual 
of the fitted data of 15 points (Table 1) is generally large enough 
for further normality and Grubbs tests to be carried out. When 
doing nonlinear regression, the same assumption is made as to 
when performing linear regression: that the dispersion of data 
about the ideal curve follows either a Gaussian or normal 
distribution. Based on this assumption, the aim of regression is to 
minimise the sum of the squares of the vertical or Y-value 
distances between the points and the curve, which is well-known 
in mathematics. Outliers can have a significant impact on the 
sum-of-squares computation, resulting in misleading findings. 
We are not aware of any effective approach for finding outliers 
when fitting curves with nonlinear regression on a regular basis, 
though. 
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Table 1. Residuals from the Carreau-Yasuda model in fitting the 
rheological behavior of the nonnewtonian fluid 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonil) imide ([bmim][TF2N]). 
 

Data Point 
No Residual 
1 1.084054 
2 -5.18859 
3 5.26507 
4 -2.57351 
5 0 
6 -0.97973 
7 0.394232 
8 0.751616 
9 -0.35637 
10 -0.0926 
11 -0.03283 
12 -0.09837 
13 -0.01385 
14 -0.01128 
15 0.038701 

 

 
Fig. 1. Residual plot for the residuals from the Carreau-Yasuda model in 
fitting the rheological behavior of the nonnewtonian fluid 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonil) imide ([bmim][TF2N]).  
 
Table 2. Normality tests of the residuals from the Carreau-Yasuda model 
in fitting the rheological behavior of the nonnewtonian fluid 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonil) imide ([bmim][TF2N]). 
 
Test for normal distribution  
Anderson-Darling test  
A2* 1.484 
P value 0.0005 
Passed normality test (alpha=0.05)? No 
P value summary *** 
  
D'Agostino & Pearson test  
K2 6.267 
P value 0.0436 
Passed normality test (alpha=0.05)? No 
P value summary * 
  
Shapiro-Wilk test  
W 0.8079 
P value 0.0046 
Passed normality test (alpha=0.05)? No 
P value summary ** 
  
Kolmogorov-Smirnov test  
KS distance 0.2562 
P value 0.0091 
Passed normality test (alpha=0.05)? No 
P value summary ** 
  
Number of values 15 
 

 
 
 
 

The Grubb’s test was applied to the residual results (Table 
3). Grubbs test statistic defines the highest absolute variance 
from the survey mean in the sample standard deviation units. The 
critical value of Z from the statistical table for Grubbs’ test for a 
single outlier using mean and SD was 2.548 (n=15).  The Grubbs 
(Alpha = 0.05) g value was 2.518. As the g value was lower than 
the critical test statistics, then the statistics indicate an absence of 
an outlier. Individual Z value indicates that the residual with a 
value of -3 (row 3) was far from the rest but is not deem a 
significant outlier (p > 0.05).  
 
Table 3. Descriptive statistics and calculated Z value for the residuals 
from the Carreau-Yasuda model in fitting the rheological behavior of the 
nonnewtonian fluid 1-butyl-3-methylimidazolium bis(trifluoro-
methylsulfonil) imide ([bmim][TF2N]). 
 
Mean: -0.121 
SD: 2.139 
# of values: 15 
Outlier detected? No 
Significance level: 0.05 (two-sided) 
Critical value of Z: 2.548 
 
Row Value Z Significant Outlier 
1 1.084 0.563  
2 -5.189 2.369  
3 5.265 2.518 Furthest from the rest, but not a significant outlier (P > 0.05). 
4 -2.574 1.147  
5 0.000 0.057  
6 -0.980 0.402  
7 0.394 0.241  
8 0.752 0.408  
9 -0.356 0.110  
10 -0.093 0.013  
11 -0.033 0.041  
12 -0.098 0.011  
13 -0.014 0.050  
14 -0.011 0.051  
15 0.039 0.075  
 

Despite the absence of an outlier, as demonstrated, the 
residuals did not pass all of the normality tests. When this occurs, 
the next recommended step is to use the ROUT method. The 
ROUT method indicates the presence of three outliers. After 
removal of the outlier, the model’s normal probability or Q-Q 
plot was relatively straight (Fig. 2) and the model’s residual 
passes two ot of the four normality tests (Table 4). The resulting 
histogram (Fig. 3) overlaid with the ensuing normal distribution 
curve reveals that the residuals roughly conforms to a normally 
distributed data and that the model used was adequately fitted.  

 
Fig 2. Normal Q-Q plot for the observed sample against theoretical 
quantiles for the residuals from the Carreau-Yasuda model in fitting the 
rheological behavior of the nonnewtonian fluid 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonil) imide ([bmim][TF2N]). 
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Table 4. Normality tests of the residuals from the Carreau-Yasuda model 
in fitting the rheological behavior of the nonnewtonian fluid 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonil) imide ([bmim][TF2N]) 
after removal of outlier. 
 

Test for normal distribution  
Anderson-Darling test  
A2* 0.7155 
P value 0.0451 
Passed normality test (alpha=0.05)? No 
P value summary *   
D'Agostino & Pearson test  
K2 1.651 
P value 0.4381 
Passed normality test (alpha=0.05)? Yes 
P value summary ns   
Shapiro-Wilk test  
W 0.9048 
P value 0.1829 
Passed normality test (alpha=0.05)? Yes 
P value summary ns   
Kolmogorov-Smirnov test  
KS distance 0.2640 
P value 0.0205 
Passed normality test (alpha=0.05)? No 
P value summary *   
Number of values 12 

 
 

 
Fig. 3. Histogram of residual for the Carreau-Yasuda model in fitting the 
rheological behavior of the nonnewtonian fluid 1-butyl-3-
methylimidazolium bis(trifluoromethylsulfonil) imide ([bmim][TF2N])  
overlaid with a normal distribution (mean 0.057 and standard deviation 
0.5191). 
 

Although viscosity is frequently used in fluid mechanics to 
characterize a fluid's shear properties, it may not be adequate to 
represent non-Newtonian fluids in all circumstances. In order to 
better understand them, several additional rheological properties 
that relate to stress and strain rate tensors under a range of flow 
conditions, such as oscillatory shear or extensional flow, are used 
in conjunction with different measuring instruments known as 
rheometers. It is preferred to use tensor-valued constitutive 
equations, which are common in the field of continuum 
mechanics, to investigate the features of the system [15,30–33]. 
 

Shear thinning (as opposed to shear thickening) is a subset 
of non-Newtonian behavior of fluids whose viscosity decreases 
under shear strain. It is sometimes considered synonymous with 
pseudoplastic behaviour. Shear thinning is the most common 
type of non-Newtonian behavior of fluids and is seen in many 
industrial and everyday applications. Although shear thinning is 
generally not observed in pure liquids with low molecular mass 
or ideal solutions of small molecules like sucrose or sodium 
chloride, it is often observed in polymer solutions and molten 
polymers, as well as complex fluids and suspensions like 
ketchup, whipped cream, blood, paint, and nail polish [3,34–39]. 

Shear thinning fluids are a new class of fluids that have 
applications in polymerization and the production of multiple 
emulsions. Various models, such as the Williamson model [40], 
Ostwald-de-Waele model [1], the cross model [41], the Ellis 
model [1],  the Carreu and the Carreau-Yasuda models [42,43] 
have been proposed to predict the rheological characteristics of 
shear thinning fluids.  

 
The Cross and the Carreau-Yasuda models for non-

Newtonian pseudoplastic fluids are two of the most widely used 
models for non-Newtonian pseudoplastic fluids. The Cross 
model is a non-Newtonian data-passive empirical equation with 
a variable coefficient [1]. This model (which describes 
asymptotic flow at zero (n0) and infinite (n∞) shear rates with no 
asymptotic viscosity and no yield stress) is more particular in that 
it is not a generalized model. Cross and Carreau-models Yasuda's 
may explain a wide range of fluid types, including dispersions, 
polymer melts, and polymer solutions, in two empirical 
equations, including dispersions and polymer melts. The 
Carreau-Yasuda model is another empirical equation that may be 
utilized with non-Newtonian data. Both the model Cross and the 
model Carreau-Yasuda have descriptions that are similar to one 
another [1,42,43]. In comparison to the Cross model, it contains 
more parameters and is the most often used variant of the fluid 
model of the power law. Emulsions, biopolymer solutions, 
protein solutions, polymer melts, and polymer solvents are all 
examples of fine fluids that may be described using the Carreau-
Yasuda model for start-to-shear fine fluids. If the fittings for both 
models are near to their respective statistical function error 
analyses, the Cross model, which has lower parameters, should 
be selected as a rule of thumb. The Carreau-Yasuda model has 
found application in some biological systems, for instance in the 
modelling of the non-Newtonian blood flow in intracranial 
aneurysm cases, where the normality of the residuals has been 
checked with several normality models [4]. 
 

It is common to practise calculating the fitness of a 
mathematical model precisely through the use of residual 
measurements. As defined by a certain mathematical model, 
residuals are the difference between the sum expected and the 
total actually observed. The underlying premise is that the wider 
the disparity between the expected and observed values, the 
poorer the model is considered to be. A probable outlier is a data 
point that is out of the ordinary and that the researcher determines 
to be impossible based on a range of specific criteria. More 
specifically, an outlier in a study may be a unique characteristic 
that is far too uncommon in comparison to the rest of the 
population. To give an example, most outliers are only 
considered outliers if they are statistically excessively high for 
the distribution to the limit in the sample model, which is not 
always the case  [44].  

 
A simple strategy to identify potential outliers in testing is 

to include a boxplot, although more complex methodologies, 
such as the Chauvenet criteria in engineering and the 3-sigma 
criterion, coupled with the Z-score in chemometrics, are 
frequently employed. Despite the fact that these approaches are 
simple and quick, there is a considerably more effective way of 
employing the statistical test for outlier discovery than the 
methods described above. With the exception of one outlier, 
relevant assessments differ from the Dixon Q-test or the Grubbs 
ESD-test.  
 

A variety of conditions have benefitted from the use of the 
Grubbs test to detect the presence of outliers [45–55]. The most 
significant restriction of the Grubbs test is that the thinking 
quantity of the outliers, denoted by the letter k, must be given 
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explicitly. A failure to properly clarify the variable "k" can result 
in distorted results from the trials. A test called the Rosner 
Generalized Severe Studentized Deviate (ESD-test) is used when 
there are several outliers or when the exact number of outliers 
cannot be determined [56]. For example, if there is more than one 
outlier in a sample, the findings of the Grubbs test will be 
distorted, and when this occurs, the Ferguson sample skew test is 
more resistant to the misleading impact than the Grubbs test  [57]. 
 

The number of bins and samples assessed determined the 
shape of the distribution. The W2 statistic in the Wilks-Shapiro 
test is calculated using the anticipated values of the order 
statistics between identically distributed random variables as well 
as their independent covariance, as well as the regular normal 
distribution. The agreement is refused if the test statistics-W2 
have a significant impact on the outcome. According to Royston, 
formalised euphemism is The Kolmogorov-Smirnov statistic, 
when applied to data, computes the cumulative residual 
frequency, which is a non-parametric numerical test [23]. It 
evaluates the link between the model and the observed values. It 
can also be used to compare two sets of data to see how they 
differ. The p value is derived using the difference between two 
combined distributions as well as the sample population size. On 
a more general level, the Central Limit Theorem (CLT) claims 
that as n approaches infinite (in actuality, n>30), the probability 
frequency distribution tends to fit the Gaussian distribution on 
any continuous variable (even for discrete variables such as 
Binomial or Poison distributions) [58,59]. The skewness and 
kurtosis of the distributions were analysed as a technique of 
quantifying the difference between the sample distributions and 
the usual distribution in order to determine the significance of the 
results in the D'Agostino-Pearson normality test method. 
Following that, the p-value of the sum of these inconsistencies or 
discrepancies is calculated. D'Agostino developed a variety of 
normality tests, the most extensively used of which is the 
omnibus K2 test [25]. More and more nonlinear regression curve 
fitting exercise works are reporting extensive testing for the 
normality of the residuals [60–68]. 
 
CONCLUSION 
 
In conclusion, the normality checks performed on the residues 
used in this study revealed that the use of the  the Carreau-Yasuda 
model in fitting the rheological behavior of the non-Newtonian 
fluid1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) 
imide ([emim][TF2N]) was initially not satisfactory due to the 
presence of three outliers. Removal of these outliers gave 
acceptable results in terms of normality tests and visual 
conformation of the residual, Q-Q plot and overlaid normality 
curve to the histogram, indicating that the model is now 
appropriate for the data. Much research on the use of the model 
utilised in the mathematical diagnostic of residues have been 
published, but it is commonly known that they have not gone any 
farther in their exploration. This may result in a data violation in 
the case of a Gaussian or regular distribution. The majority of 
nonlinear regression parametric prediction estimate 
methodologies rely on this assumption as a required but not 
sufficient condition. Methods such as the root mean square error, 
Pearson correlation coefficient (either standard or modified), the 
F-test, and the t-test are utilised on the basis of residuals that 
follow the normal distribution. If these assumptions were 
followed, Type I and Type II errors may be avoided. 
Furthermore, if diagnostic tests demonstrate that pollutants have 
breached any of the assumptions, the problem can be resolved in 
the field by adopting a variety of nonparametric treatments or 
changing the form of the therapies in question. 
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