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INTRODUCTION 
 
According to the World Health Organization (WHO), the COVID-
19 pandemic is a worldwide coronavirus disease 2019 (COVID-
19) pandemic caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) that was announced by the WHO in 
March 2020. The new virus was identified in Wuhan, China, in 
December of 2019; a lockdown in Wuhan and other towns in 
Hubei province failed to stop the epidemic, which expanded to 

other parts of mainland China and throughout the world after the 
outbreak was detected. The outbreak was declared a Public Health 
Emergency of International Concern by the World Health 
Organization (WHO) on January 30, 2020, and a pandemic was 
proclaimed on March 11, 2020. The virus has been causing 
outbreaks in a number of countries since 2021, with the most 
hazardous strains being the Delta, Alpha, and Beta variants, which 
are the most common. As of the 22nd of July, 2021, more than 191 
million cases have been documented, with more than 4.12 million 
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 ABSTRACT 
Traditionally, testing for outliers is performed by first creating a null hypothesis, H0, indicating 
that the suspected results do not differ significantly from those of other members of the data set, 
and then rejecting it if the likelihood of getting the experimental results is extremely low (e.g., 
p=0.05). Similarly, if H0 can be rejected, the questionable findings may be discarded as outliers 
as well. If H0 is retained in the data set, it is important to keep the dubious findings in the data 
set. In general, in nonlinear regression, the residuals of the curve must be normally distributed 
before any test for the existence of outliers is performed. This is often accomplished through the 
use of normalcy tests such as the Kolmogorov-Smirnov, Wilks-Shapiro, D'Agostino-Pearson, and 
Grubb's tests, the latter of which checks for the presence of an outlier and is the subject of this 
study. Normality tests for residues used in general nonlinear regression revealed that the usage 
of the Morgan-Mercer-Flodin (MMF) Model used for Modelling the Total Number of COVID-
19 Cases for Brazil was adequate due to lack of an outlier. The critical value of Z from statistical 
table for Grubbs’ test for a single outlier using mean and SD was 0.114 (n=50).  The Grubbs 
(Alpha = 0.05) g value was 3.597. Individual Z value indicates that the residual with a value of -
3 (row 3) was far from the rest and is deemed a significant outlier (p < 0.05). This outlier was 
removed, and subsequent Grubb’s test show the absence of other outliers. As the Grubbs’ test 
require for the normality of the residuals, several normality tests (Kolmogorov-Smirnov, Wilks-
Shapiro, Anderson-Darling and the D'Agostino-Pearson omnibus K2 test) were carried out and 
the results were found to conform to normality. In addition, a visual inspection of the model’s 
normal probability or Q-Q plot shows a nearly straight and appeared to exhibit no underlying 
pattern. The resulting histogram overlaid with the ensuing normal distribution curve also reveals 
that the residuals were truly random and that the model used was adequately fitted. 
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confirmed deaths due to COVID-19, making it one of the deadliest 
pandemics in history [1,1–5]. People are becoming increasingly 
conscious of the uneven distribution of SARS-COV-2 mortality 
among disadvantaged communities as the death toll from COVID-
19 continues to rise around the world. In addition to the elderly, 
individuals who live in densely crowded regions, persons who 
have poor socioeconomic position, refugees, and members of 
minority groups should be taken into consideration. Almost every 
community is in risk of being annihilated. The infection rates in 
these populations are higher than those in the general population, 
making them more susceptible to infection and unfavourable 
disease effects than other groups [6,7].  
 
       In the initial period, mathematical modelling research in 
Wuhan City and Hubei Province total infectious cases was focused 
on the dynamics of the pandemic[8]. At this early stage, it has 
taken a significant amount of time and effort to examine 
surveillance data from China in order to produce parameter 
estimates such as the basic reproduction number (R0), case fatality 
rate, and incubation duration [9]. Early attempts at Susceptible-
Exposed-Infectious-Recovered (SEIR) style dynamic models 
were 'borrowed' from what was known about other coronaviruses 
(SARS-CoV and MERS-CoV) and/or gained through fitting the 
models to monitoring data gathered during the initial outbreaks  
[10]. COVID-19 pandemic assessments can be carried out with the 
help of statistical models, including theoretical, quantitative, and 
simulation models. Mathematical models are then applied for 
other affected countries to better understand the mode and spread 
of infection [1,4,11–18]. 
 
      Organisms growth including viral infection cases over time 
usually exhibit a sigmoidal growth profile that exhibits lag time 
(λ), acceleration to a maximal value (µm) and a final phase where 
the rate decreases and eventually reaches zero or an asymptote (A) 
is observed [19]. The sigmoidal curve can be fitted by different 
mathematical functions, such as Logistic [19,20], modified 
Gompertz [19,21], Richards [19,22], Schnute [19,23], Baranyi-
Roberts [24], Von Bertalanffy [19,25–27], Buchanan three-phase  
[28,29], Huang [30–33] and Morgan-Mercer-Flodin (MMF) [34–
43, 43–47]. For the analysis of the COVID-19 pandemic [8], 
strong predictive ability was employed models, such as updated 
Gompertz and Bertalanffy and logistics. The total infection case 
of SARS-CoV-2 in Brazil as of 15th of July 2020 to the 20th of 
December 2020 was modelled using several primary growth 
models via nonlinear regression. The MMF models found to be the 
best [41,42,44,46,48–51]. 
 
     When linearization is used to smooth out an obviously 
nonlinear curve, the error structure of the data is disturbed, as is 
the case in this example. As a result, evaluating the uncertainty of 
the kinetic parameters, which are often given as a 95 percent 
confidence interval range, becomes more difficult. In addition, the 
linearization method leads in the introduction of error into the 
independent variable as a result of the linearization procedure [52–
57]. Additionally, changes in the weights assigned to each data 
point can occur, which typically results in differences in the fitted 
parameter values between the linear and nonlinear versions of the 
kinetics model when compared to the linear version. Nonetheless, 
in nonlinear regression, the residuals of the curve must be 
normally distributed, and the residuals must be checked for the 
presence of outliers [at 95 or 99 percent confidence levels]. In 
most cases, normality tests such as the Kolmogorov-Smirnov, 
Wilks-Shapiro, and D'Agostino-Pearson, as well as the Grubb's 
test, which tests for the presence of an outlier, are used to do this. 
The Grubb's test is the subject of this study because it tests for the 
presence of an outlier. 
 

METHOD 
 
Data on the mathematical modelling of the total number of 
COVID-19 cases for Brazil using the MMF model (Equation 1) 
from our previous works [43] was utilized in this study (Fig. 6). 
 
Residuals 
Residuals are very important in assessing the health of a curve 
from a particular used model. Mathematically, residual for the ith 
observation in a given data set can be defined as follows (Eqn. 1);  
 

 ……………………………….. (Eqn. 1) 
 
where yi denotes the ith response from a given data set while xi is 
the vector of explanatory variables to each set at the ith observation 
corresponding values in the data set. 
 
Grubbs’ Statistic 
In an average value, a single data point with deformation can lead 
to gross error in the fitting of a nonlinear curve. Therefore, 
searching for an outlier is an integral aspect of curve fitting. The 
Grubbs test is used to evaluate the outlier in the univariate 
environment and the data is normally distributed [58]. The test can 
be applied to the maximal or minimal observed data from a 
Student’s t distribution (Eqn. 2) and to test for both data 
simultaneously (Eqn. 3).  
 

 

 

 

 

 
 
 
 (Eqn. 2) 

 

 
(Eqn. 3) 

 
Normality test 
Residuals from the pseudo-1st order model were subjected to three 
normality tests- Kolmogorov-Smirnov [59,60], Wilks-Shapiro 
[61], Anderson-Darling [62] and the D'Agostino-Pearson omnibus 
K2 test [63]. Using graphical and numerical methods are two ways 
to search for normality. The simplest and easiest way to assess the 
normality of data is via graphical methods such as the normal 
quantile–quantile (Q-Q) plots, histograms or box plots [64]. The 
normality tests were carried out using the GraphPad Prism® 
software (Version 6.0, GraphPad Software, Inc., USA). 
 
RESULTS AND DISCUSSION 
 
Statistics often used in nonlinear regressions rely on the use of 
residual data, which is the difference between the expected and the 
actual values. Statistical analyses should be done to evaluate the 
adequacy of residues in randomness, do not include outliers, obey 
normality, and do not demonstrate autocorrelation. Usually, the 
greater the discrepancy between the expected and the observable 
values, the less well off the model. [65]. The Grubbs' test deals 
with one aspect at a time. Outliers are eliminated and test 
replicated before test passes without revealing any outliers. As a 
general rule, sample sizes of 6 or less results in biased data sets. 
Many variations of the same model alter the probability of 
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identification. The Grubb’s test was applied to the residual results 
(Table 1). Grubbs test statistic defines the highest absolute 
variance from the survey mean in the sample standard deviation 
units. The critical value of Z from statistical table for Grubbs’ test 
for a single outlier using mean and SD was 0.114 (n=50).  The 
Grubbs (Alpha = 0.05) g value was 3.597. Individual Z value 
indicates that the residual with a value of -3 (row 3) was far from 
the rest and is deemed a significant outlier (p < 0.05) (Table 2). 
This outlier was removed, and subsequent Grubb’s test show the 
absence of other outliers (Data not shown). 
 
Table 1. Residual data from the pseudo-1st order model. 
 

 Residuals 
 0.0000 
 -0.0600 
 -0.1500 
 -0.2000 
 -0.4200 
 -0.0100 
 -0.1400 
 0.1500 
 0.0000 
 0.1300 
 0.2400 
 0.2000 
 0.1500 
 0.1000 
 0.1100 
 0.0500 
 0.06 
 -0.01 
 0 
 -0.06 
 -0.11 
 -0.13 
 -0.13 
 -0.12 
 -0.13 
 -0.12 
 -0.1 
 -0.12 
 -0.09 
 -0.09 
 -0.1 
 -0.05 
 -0.04 
 -0.01 
 -0.01 
 0.01 
 0.01 
 0.02 
 0.02 
 0.03 
 0.04 
 0.04 
 0.06 
 0.06 
 0.07 
 0.07 
 0.07 
 0.07 
 0.07 
 0.07 
Average -0.010 
Std deviation 0.12 

 
Table 2. Descriptive statistics and calculated Z value for residual data. 
Only the first seven data are shown. 
 

Row Value Z Significant Outlier? 
 0.0000 0.087720   
2 -0.0600 0.438598   
3 -0.1500 1.228074 A significant outlier (P < 0.05). 
4 -0.2000 1.666672   
5 -0.4200 3.596503   
6 -0.0100 0.000000   
7 -0.1400 1.140354   

 

 
 
Fig. 1. Residual plot for the pseudo-1st order model model. 
 
Table 3. Numerical normality test for the residual from the pseudo-1st 
order model after removal of an outlier. 
 
Test for normal distribution  
Anderson-Darling test  
A2* 0.5764 
P value 0.1273 
Passed normality test (alpha=0.05)? Yes 
P value summary ns   
D'Agostino & Pearson test  
K2 9.896 
P value 0.0071 
Passed normality test (alpha=0.05)? No 
P value summary **   
Shapiro-Wilk test  
W 0.9510 
P value 0.0376 
Passed normality test (alpha=0.05)? No 
P value summary *   
Kolmogorov-Smirnov test  
KS distance 0.1200 
P value 0.0693 
Passed normality test (alpha=0.05)? Yes 
P value summary ns   
Number of values 50 
 
     It is common practise to calculate the fitness of a mathematical 
model precisely through the use of residual measurements. As 
defined by a certain mathematical model, residuals are the 
difference between the sum expected and the total actually 
observed. The underlying premise is that the wider the disparity 
between the expected and observed values, the poorer the model 
is considered to be. The residual plot (observed-predicted) was 
tested, and the results of the investigation demonstrated that the 
data for all experiments exhibit an outlier (Fig. 1). Evidently, a 
probable outlier is a data point that is out of the ordinary and that 
the researcher determines to be impossible based on a range of 
specific criteria.   
 
     More specifically, an outlier in a study may be a unique 
characteristic that is far too uncommon in comparison to the rest 
of the population. To give an example, most outliers are only 
considered outliers if they are statistically excessively high for the 
distribution to the limit in the sample model, which is not always 
the case  [66].  
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     A simple strategy to identify potential outliers in testing is to 
include a boxplot, although more complex methodologies, such as 
the Chauvenet criteria in engineering and the 3-sigma criterion, 
coupled with the Z-score in chemometrics, are frequently 
employed. Despite the fact that these approaches are simple and 
quick, there is a considerably more effective way of employing the 
statistical test for outlier discovery than the methods described 
above. With the exception of one outlier, relevant assessments 
differ from the Dixon Q-test or the Grubbs ESD-test.  
 
     A variety of conditions have benefitted from the use of the 
Grubbs test to detect the presence of outliers [67–77]. The most 
significant restriction of the Grubbs test is that the thinking 
quantity of the outliers, denoted by the letter k, must be given 
explicitly. A failure to properly clarify the variable "k" can result 
in distorted results from the trials. A test called the Rosner 
Generalized Severe Studentized Deviate (ESD-test) is used when 
there are several outliers or when the exact number of outliers 
cannot be determined [78]. For example, if there is more than one 
outlier in a sample, the findings of the Grubbs test will be 
distorted, and when this occurs, the Ferguson sample skew test is 
more resistant to the misleading impact than the Grubbs test  [79]. 
 
     The number of bins and samples assessed determined the shape 
of the distribution. The W2 statistic in the Wilks-Shapiro test is 
calculated using the anticipated values of the order statistics 
between identically distributed random variables as well as their 
independent covariance, as well as the regular normal distribution. 
The agreement is refused if the test statistics-W2 have a significant 
impact on the outcome. According to Royston, formalised 
euphemism is The Kolmogorov-Smirnov statistic, when applied to 
data, computes the cumulative residual frequency, which is a non-
parametric numerical test [61]. It evaluates the link between the 
model and the observed values. It can also be used to compare two 
sets of data to see how they differ. The p value is derived using the 
difference between two combined distributions as well as the 
sample population size.  
 
     On a more general level, the Central Limit Theorem (CLT) 
claims that as n approaches infinite (in actuality, n>30), the 
probability frequency distribution tends to fit the Gaussian 
distribution on any continuous variable (even for discrete variables 
such as Binomial or Poison distributions) [80,81]. The skewness 
and kurtosis of the distributions were analysed as a technique of 
quantifying the difference between the sample distributions and 
the usual distribution in order to determine the significance of the 
results in the D'Agostino-Pearson normality test method. 
Following that, the p-value of the sum of these inconsistencies or 
discrepancies is calculated. D'Agostino developed a variety of 
normality tests, the most extensively used of which is the omnibus 
K2 test [63]. More and more nonlinear regression curve fitting 
exercise works are reporting an extensive testing for the normality 
of the residuals [82–90]. 
 
Graphical diagnostic of residuals normality 
After removal of the outlier, the model’s normal probability or Q-
Q plot was nearly straight and appeared to exhibit no underlying 
pattern (Fig. 4). The resulting histogram (Fig. 5) overlaid with the 
ensuing normal distribution curve reveals that the residuals were 
truly random and that the model used was adequately fitted.  

 
Fig 4. Normal Q-Q plot for the observed sample against theoretical 
quantiles after outlier removal. 
 
 
 

 
Fig. 5. Histogram of residual for the pseudo-1st order model overlaid with 
a normal distribution (mean 0.00163 and standard deviation 0.0984). 
 
CONCLUSION 
 
In conclusion, the normality checks performed on the residues 
used in this study revealed that the use of the pseudo-1st order 
model in the fitting of Modelling the Total Number of COVID-19 
Cases for Brazil was satisfactory due to the absence of an outlier, 
indicating that the model was appropriate for the data. Many 
studies on the application of the model used in the mathematical 
diagnostic of residues have been published, but it is widely known 
that they have not gone any farther in their exploration. In the case 
of a Gaussian or regular distribution, this may result in a data 
violation. Most of the parametric predictive estimate approaches 
used in nonlinear regression rely on this assumption as a necessary 
but not sufficient condition. On the basis of residuals that adhere 
to the normal distribution, methods such as the root mean square 
error, Pearson correlation coefficient (either standard or 
modified), the F-test, and the t-test are used. Type I and Type II 
mistakes might be avoided if these assumptions were followed. 
Additionally, in the event that diagnostic tests reveal that the data 
from the total number of COVID-19 Cases have violated any of 
the assumptions, the issue may be rectified in the field by 
implementing numerous nonparametric treatments or changing 
the form of the therapies in question. 
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