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INTRODUCTION 
 
Bacterial growth-linked processes frequently display a unique 
phase in which the specific growth rate of the bacterium begins 
at zero and then quickly accelerates reaching a maximal point. It 
has been resolved that those processes involved a specific growth 
rate with a value of zero, after which it begins to increase (µmax) 
in a certain time period, producing a lag time (λ). It has been 
argued that the lag period seen in the sigmoid shape is because 

the bacterial cells are gearing their growth mechanism to adjust 
to a new environment having been in a vegetative state especially 
during storage. This period is customarily called the lag period. 
It has been suggested as a transient period that connects two 
autonomous systems. The introduction of the lag time or 
parameter is meant largely convenience rather than having a 
mechanistic interpretation [1]. It is theorized that in the initial 
innocula, each bacterial cells would have different rates of 
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 ABSTRACT 
Heavy metals can be remediated using microorganism by altering the redox function i.e. 
reduction from more toxic oxidation state to non-toxic one. Molybdenum reduction to 
molybdenum blue by bacteria is an emerging tool for remediation of the metal. Mathematical 
modelling via nonlinear regression of the heavy metal’s reduction can yield important reduction 
parameters such as theoretical maximum reduction, specific reduction rate, and the lag period of 
reduction. Nonlinear regression can be utilized using various models such as logistic, Richards, 
Gompertz, Baranyi-Roberts, Schnute, Buchanan 3-phase, Von Bertalanffy and Huang with the 
best model yielding an underlying mechanistic property for the reduction. We demonstrate that 
the Baranyi-Roberts model was the best model in modelling the Mo-blue production curve of the 
bacterium Bacillus sp. strain Neni-10 based on statistical tests such as root-mean-square error 
(RMSE), corrected AICc (Akaike Information Criterion), adjusted coefficient of determination 
(R2), accuracy factor (AF) and bias factor (BF). The model parameters or constants obtained were 
maximum lag time (λ), Mo-blue production rate (µm), and maximal Mo-blue production (Ymax). 
The construction of secondary models will benefit greatly from the use of bacterial growth 
models to acquire realistic Mo-blue production rates. According to a literature search, this 
technique is wholly unique for molybdenum reduction to Mo-blue in particular, and in the heavy 
metals’ detoxification process in general. The results of this study have demonstrated the 
usefulness of these models in simulating Mo-blue synthesis in bacteria. 
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growth and if these rates are to be measured, would have shown 
a nonlinear distribution as suggested by researchers [1,2]. 
 

An emerging metal pollution: molybdenum has numerous 
applications, including in the manufacture of steel, corrosion-
resistant steel component, engine anti-freeze additive and 
molybdenum disulfide in lubricant. Several cases of soil and 
water pollution have occurred due to the use of molybdenum in 
industry [3]. Molybdenum is highly toxic with cows with most 
affected to ruminants at a level as low as several parts per million 
and is due to the hypercuprosis phenomenon [4,5]. Mo-reducing 
bacteria are central to the bioremediation of this metal and to 
date, several are locally isolated [6–13] with the exception of a 
few [14–18]. Not many works on reducing molybdenum as a 
detoxification process due to the metal’s perceived low toxicity 
in humans in comparison to other heavy metals, such as mercury, 
selenium and chromium. However, the latest data shows that 
molybdenum is toxic in animal models and has play a role in 
sperm inhibition and embryogenesis arrest in organisms like 
catfish and mouse [19,20].  
 

Several kinetic studies on Mo-blue production have been 
explored previously [21,22] but all of these works utilize the 
linearization of the Mo-blue production over time profile to 
obtain the specific growth rate for further secondary modelling. 
As the benefits of nonlinear regression analysis of the Mo-blue 
production have been described above, thus, the objective of this 
work is to evaluate several available models such as Logistic 
(Ricker, 1979; Zwietering et al. 1990), Gompertz [24,25], 
Richards [24,26], Schnute [24], Baranyi-Roberts [27], Von 
Bertalanffy [28,29], Buchanan three-phase [30] and more 
recently Huang model [31] (Table 1) in modeling Mo-blue 
production from the bacterium Bacillus sp. strain Neni-10. 

 
MATERIALS AND METHODS 
 
Isolation and maintenance of the molybdate-reducing 
bacterium  
The bacterium was previously isolated, identified and 
characterized by Mansur et al. [11]. The growth and maintenance 
were carried out on solid agar in low phosphate medium (pH 7.0) 
[32] containing (NH4)2SO4 (0.3%), Na2MoO4.2H2O (0.242%), 
glucose (1%), NaCl (0.5%), MgSO4.7H2O (0.05%), yeast extract 
(0.0.5%), and Na2HPO4 (0.071% or 5 mM). Glucose was 
separately autoclaved.  
 
Bacterial resting cells preparation  
The study of the optimal conditions for reducing molybdenum 
from these bacteria in a microplate used resting or whole cells 
(microtiter) format [33]. To prepare resting cells without the 
presence of blue product, the LPM medium above was modified 
by excluding sodium molybdate and increasing the phosphate 
concentration to 100 mM. Overnight growth from a single colony 
inoculation into several 250 mL flasks with a total volume of 1 L 
was carried out at 120 rpm on an orbital shaker (Yihder, Taiwan). 
Cultures were pooled and cells were centrifuged at 15,000 × g for 
10 min at room temperature. Pelleted cells with an approximate 
wet weight of 10 g were rinsed twice with sterile deionized water 
and resuspended in 20 mL of LPM with glucose omitted. Cell 
suspension of exactly 180 µL was transferred into the wells of a 
sterile microplate. Then 20 µL of sterile glucose or other carbon 
sources were added from a stock solution to the final 
concentration of 1.0 % (w/v). The final volume was 200 µL.  
 
 
 
 

Table 1. Mo-blue production models used in this study. 
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linear 
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Note: 
A= lower asymptote for Mo-blue; 
µm= maximum specific Mo-blue production rate; 
v= affects near which asymptote maximum for Mo-blue production occurs. 
λ=lag time 
ymax= Mo-blue upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
The lag time (h-1) can be calculated as h0=µmax 
 

Addition of the carbon sources started Mo-blue production. 
Growth was measured at 600 nm while Mo-blue reduction was 
monitored at 750 nm (BioRad 680 (Richmond, CA, USA). To 
quantify Mo-blue production, the specific extinction coefficient 
of 11.69 mM.-1.cm-1 at 750 nm was utilized. The readings at 750 
nm must first be subtracted from readings at 600 nm to measure 
Mo-blue. This wavelength is the maximum filter available for the  
microplate unit [33].  
 
 
 

y = A, if x < lag 
y=A + k(x ̶ λ), if λ ≤ x ≥ xmax 

y = ymax, if x ≥ xmax 
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Determination of Kinetic Parameters for Molybdenum Blue 
production 
 
Fitting of the data 
Nonlinear regression using the Marquardt algorithm 
(CurveExpert Professional software, Version 1.6) was used to 
align growth data with nonlinear equations. The sum of the 
squares of differences between the values predicted and observed 
was minimised in this lookup approach.  
 
Statistical analysis 
Multiple approaches were used to test if models had different 
parameters and whether the fit to the same experimental data was 
significant. Error functions utilized in this study include 
corrected AICc (Akaike Information Criterion), Root-Mean-
Square Error (RMSE), bias factor (BF), accuracy factor (AF), 
and adjusted coefficient of determination (R2). The model with 
fewer parameters is expected to yield lower RMSEs. The RMSE 
was calculated according to Eq. (1), where Obi, Pdi, n and p are 
experimental  data, predicted values, number of experimental 
data and number of parameters, respectively [34].  
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The determination coefficient or R2 will be used to evaluate 

the fitness quality of a model in linear regression. As the number 
of parameters can vary amongst the models used, a penalty 
function is introduced in a better version, which is the adjusted 
R2 (equations 2 and 3) where 2

ys is the total variance of the y-

variable and RMS is Residual Mean Square. 
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The Akaike Information Criterion (AIC) is informational 

theory based and provides a model selection solution for the 
calculation of the relative quality of a particular statistical model 
for almost every single set of experimental data [35]. Data having 
a smaller number of values or a high number of parameter used 
are corrected with another version of AIC, which is the Akaike 
information criterion (AIC) with correction or AICc [36] and 
calculated according to the following equation (Eqn. 4); 
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Where n and p represent the number of data points in the 

curve and the number of parameters used in the model, 
respectively. For each data set, the model having the smallest 
AICc value is more likely correct [36]. Accuracy Factor (AF) and 
Bias Factor (BF) were calculated according to Eqns. 5 and 6 as 
suggested and first proposed by Ross [37]. A Bias Factor that is 
equal to 1 signifies an ideal match between observed and 
predicted values. For microbial growth curves or Mo-blue 
production studies, a bias factor having values < 1 signifies a fail-
dangerous model whilst a bias factor having values > 1 signifies 
a model that is fail-safe.  

 
 

The value of the Accuracy Factor is usually ≥ 1, with higher 
AF values signifies prediction that is less precise or accurate. 
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RESULTS AND DISCUSSION 
 
A sigmoidal shape profile of Mo-blue production from this 
bacterium was observed over time. A lag phase of about between 
10 and 15 hours was observed. Maximum Mo-blue production 
occurred at approximately 50 hours after static incubation (Fig. 
1). The sigmoidal shape is a typical growth process associated 
event seen in numerous Mo-reducing bacteria as the reduction of 
this metal is a growth associated process requiring reducing 
equivalents such as NADH that is often abundance during the 
exponential growth phase of bacterial growth [18]. During this 
lag phase, the bacteria are making adjustments to their 
surroundings. The population increases in a logarithmic manner 
once the lag phase is completed. Bacteria absorb nutrients as the 
population increases, producing waste products in the process.  
 

When nutrition levels are low, the bacteria development rate 
slows down, which leads to an increase in the number of viable 
bacterium cells. The bacterial cell growth and cell death are both 
equal during the stationary phase. When the mortality rate is 
higher than the birth rate, the population enters the decline phase 
but this phase was not studied here [18]. Eight different growth 
models were utilized to fit the Mo-blue production over time. 
Model with the lowest value for RMSE, AICc and the highest 
value for adjusted R2 is the best model. All of the fitting were 
visually acceptable (Fig. 2). Based on statistical analyses (Table 
2), the best performance was the Baranyi-Roberts with good 
results for the error functions discriminant. The coefficients for 
the Baranyi-Roberts model at various molybdenum 
concentrations are shown in Table 3. 

 
 

 
 
Fig. 1. The Mo-blue production curves of Bacillus sp. strain Neni-10 at 
various concentrations of sodium molybdate over time. 
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Fig. 2. The Mo-blue production curve of Bacillus sp. strain Neni-10 at 20 
mM of sodium molybdate fitted to various models such as Huang (HG), 
Baranyi-Roberts (BR), Buchanan-three phase (B3P), modified Logistics 
(ML), modified Richards (MR), von Bertalanffy (VB), modified 
Gompertz (MG) and modified Schnute (MS). 
 
 
Table 2. Statistical analysis of the various fitted models. 
 

Model p RMSE R2 adR2 AICc BF AF 
Huang 4 0.048 0.999 0.999 -64.15 1.11 1.24 
Baranyi-Roberts 4 0.128 0.994 0.991 -36.66 1.20 1.27 
Buchanan-3-phase 3 0.020 0.994 0.993 -94.76 1.01 1.09 
modified Logistics 3 0.089 0.997 0.996 -52.55 0.99 1.20 
modified Richards 4 0.022 0.992 0.990 -86.42 0.82 1.24 
von Bertalanffy 3 0.101 0.996 0.994 -49.04 0.58 1.88 
modified Gompertz 3 0.022 0.997 0.999 -99.79 1.01 1.01 
modified Schnute 4 0.089 0.997 0.995 -47.00 1.24 1.26 
Note: 
p  no of parameters 
RMSE Root mean square error 
adR2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 

 
 

 
Fig. 3. The Mo-blue production curves of Bacillus sp. strain Neni-10 on 
various concentrations of sodium molybdate fitted to the Baranyi-Roberts 
model. 
 
 
Table 3. Mo-blue production coefficients at various molybdenum 
concentrations as modelled using the Baranyi-Roberts model. 
 
  Molybdenum concentration (mM)  
 5  10 15 20 25 30 35 40 50 60 70 
Asymptote 
(ln nmole 
Mo-blue) 0.45 1.29 1.80 2.59 3.54 3.69 3.14 1.71 1.47 0.86 0.50 
µm (h-1) 0.02 0.06 0.10 0.12 0.14 0.15 0.14 0.13 0.08 0.06 0.04 
lag (h) 6.92 11.37 12.36 12.13 12.07 12.45 12.89 13.86 13.56 13.44 15.07 
 

The Baranyi-Roberts model first proposed that a first-order 
differential equation (Equation 7) describes the variation of the 
cell population (x) with time [38]; 
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The generic form of the model can be rewritten as 
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The α(t) function in the model assumes the presence of a 

bottle neck during growth which inhibits the lag phase and 
represented by P(t). The manner of inhibition is similar to the 
Michaelis–Menten kinetics. The quotient q0 represents the 
physiological state of the culture. The ratio between the 
substance P(t) and its Michaelis–Menten constant is assumed to 
grow exponentially, from an initial value q0, at a constant vs 
specific rate. The α(t) increases monotonously with the limits 0 
≤α≤1 and limt→∞ α(t)=1 as follows (Equation 10); 
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The end-of-growth or end-of product formation inhibition is 
represented by the f(t) function (Equation 11). It decreases 
monotonically with f(0) = 1 and limt→∞ f(t) = 0. The f(t) function 
is described by a logistic inhibition function in most dynamics 
models as follows; 
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Solutions to this differential equation was successfully 

worked out under certain fixed conditions, e.g. fixed 
temperatures (isothermal conditions). The penalty of the solution 
is for it having six parameters [1]; 
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Where; 
 
A represents the initial cell concentration (or product 

concentration), ymax is the asymptomatic cell concentration (or 
product concentration) in ln (CFU/ml) or ln product 
concentration, the curvature parameter is m, and this 
characterizes the shift from the exponential phase. A 
dimensionless parameter ho represents the initial physiological 
state of the cells, and v represents the curvature parameter to 
characterize the shift to the exponential phase. The lag time λ(h) 
equals ho/µmax. The maximum specific growth rate (1/h) is 
represented as µmax or µm. 
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The curvature parameters are suggested as follows; v= µmax or µm 
and m=1 decreases the number of parameters by two causing the 
model to have only four parameters, which are µmax; h0; A and 
ymax (Equation 12). It is proposed that h0 may be considered as a 
fitness gauge of the micro-organism population towards the 
actual environment [1]. This fitness indicator can be more or less 
consistent when the experimental method is standardised and can 
be the same as assuming the lag time λ and the maximum specific 
growth rate µmax is inversely proportional. 
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Compared to the modified Gompertz model, the Baranyi-

Roberts model has been hinted to mostly be a lot more 
mechanistic in qualities meaning its parameters might be 
accorded biological meaning. This is despite the model having 4 
parameters to be fitted. One suggested approach to raise the 
statistical significant of a mechanistic model with four parameter 
over a non-mechanistic three-parameter model is usually to 
increase the number of sets of data obtained [24]. Previous 
studies on models fitting Mo-blue production shows that the 
modified Gompertz model is the best model in several Mo-
reducing bacteria (Table 4) and only one study reported von 
Bertalanffy as the best model. 
 
Table 4. Mo-blue production models used in some previous 
studies. 
 

Model p Best model for Mo-reducing 
bacterium 

Ref 

Modified Logistic 3 
 

nil  

Modified Gompertz 3 Bacillus amyloliquefaciens strain 
Neni-9 
Bacillus sp. strain Neni-12 
Serratia sp. strain HMY1 
Burkholderia sp.strain neni-11 
Bacillus sp. strain Zeid 14 
 

[39–43] 

Modified Richards 
 

4 nil  

Modified Schnute 4 nil  
Baranyi-Roberts 
 

4 This study  

Von Bertalanffy 3 nil  
Huang 4 Serratia sp. strain DrY5 

 
[44] 

Buchanan  
Three-phase linear 
model 

3 nil  

 
The Baranyi and Roberts model has been used successfully 

to simulate microbial growth curves, such as Bacillus spp., 
Brochothrix thermosphacta, Escherichia coli O157:H7, Listeria 
monocytogenes, Staphylococcus spp., Clostridium spp., 
Salmonella Typhimurium and Yersinia enterocolitica  
[1,27,29,45,46].  In addition, the Baranyi-Roberts model has 
found application in modelling algae growth [47,48]. The model 
is preferred because of a number of factors: firstly, exhibits an 
excellent fitting capability; secondly, the model is appropriate 
under dynamic environmental situations, and thirdly, the 
majority of the model parameters do have biological meaning   
[29,49]. The parameters maximum lag time (λ), Mo-blue 
production rate (µm) and maximal Mo-blue production (Ymax) 
were the outputs of the modelling exercise. The biological 
parameters generated at this stage will be utilised later for 

secondary modelling, such as using the Monod two-parameter 
model or other more advanced models such as Haldane, Aiba, 
Yano and others. The physical, chemical and biological 
mechanisms that contribute to the growth profile are all 
mechanistic models, which are mostly employed in fundamental 
research. Meaningful patterns can be more accurately predicted 
using a mechanistic model. Extrapolation beyond the reported 
circumstances makes them more likely to operate correctly [50]. 
 
CONCLUSION 
 
Based on error function analysis, it can be concluded that the best 
model for fitting molybdenum-blue production in Bacillus sp. 
strain Neni-10 was Baranyi-Roberts. The fitting exercise gave 
important parameters such as maximum Mo-blue production rate 
(µm), lag time (λ) and maximal Mo-blue production, respectively. 
This is a unique method for obtaining accurate Mo-blue 
production rate that will be beneficial in developing further 
secondary models. This study shows that bacterial growth models 
are applicable to this procedure in the field of heavy metals 
detoxification, particularly Mo-blue production. Works 
underway include further secondary modelling for the values of 
Mo-blue production rate of the bacteria that we studied, 
particularly with regard to the impact of a growth substrate 
(molybdenum) on reduction. Other studies aimed at clarifying the 
molecular mechanisms underlying Mo-blue formation include 
the analysis of environmental factors such as pH and 
temperature. 
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