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INTRODUCTION 
 
Flame retardants from polybrominated diphenyl ethers (PBDEs) 
are commonly integrated into many consumer goods, such as 
plastics, mobile devices, textiles, construction supplies, wiring 
insulation materials and foam upholstery [1,2] Since the 1970s, 
BDEs have been used to comply with fire safety legislation by 
extending flame dispersion and intervening with polymeric 
material ignition [3]. In the PBDE family, there are 209 potential 
congeners, and one of the most widely used compounds is 4-
bromodiphenyl ether (BDE-3). In comparison to reactive 
brominated flame retardants (BFRs) chemically bound to the 
polymer, mechanically blended additive BFRs such as PBDEs do 
not form chemical bonds with the polymeric matrix and appear 

to elute out into the atmosphere [4,5]. As BDE-3 and BDE-15 are 
the most abundant photodegradation products of higher 
brominated PBDEs, considerable levels of both congeners have 
been found in the environment  [6–8]. 
 

PBDE was formally established by the United Nations 
Environment Programmes (UNEP) in 2009 as a new form of 
persistent organic contaminants (POPs) [9]. Many other 
characteristics have led to their environmental persistence, 
namely chemical inertness, long half-life, low vapor pressure, 
good lipid solubility and degradation resistance [10]. This 
lipophilic PBDEs have chemical properties that are somewhat 
close to those of thyroid hormones and are also thought to be 
endocrine disruptors that may induce cancer and trigger 
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 ABSTRACT 
Methods such as membrane isolation, ion replacements, precipitation, transformation and 
biosorption are proven approaches to contaminant control. Biosorption has all of these 
technological features including low operating costs, very efficient detoxifying of toxicities at 
low volumes, minimal amounts of removal components and nutrient requirement, as well as 
bacterial remediation, which are limited to the presence of heavy metals and other toxicants. The 
biosorption of BDE-3 on coconut leaves powder on the biosorption of BDE-3 from coconut 
leaves powder were analyzed using three models—pseudo-1st, pseudo-2nd and Elovich, and fitted 
using non-linear regression. Statistical analysis based on root-mean-square error (RMSE), 
adjusted coefficient of determination (adjR2), bias factor (BF), accuracy factor (AF), corrected 
AICc (Akaike Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn 
information criterion (HQC) showed that the Pseudo-2nd order model is the best model. Kinetic 
analysis using the Pseudo-2nd order model gave a value of equilibrium sorption capacity qe for 
0.01 g per L adsorbent of 488.16 mg g-1 (95% confidence interval from 463.68 to 512.64) and a 
value of the Pseudo-2nd-order rate constant, k2 of 0.00019 (95% confidence interval from 
0.00010 to 0.00027) while the equilibrium sorption capacity qe for 0.002 g per L adsorbent of 
2403.61 mg g-1 (95% confidence interval from 2313.99 to 2493.22) and a value of the Pseudo-
2nd-order rate constant, k2 of 0.000043 (95% confidence interval from 0.000027 to 0.000059). 
These calculated values will be very useful in designing effective sorption experiment and 
understanding the limitations of the system developed. 
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neurodevelopmental defects [11,12]. The toxicity consequences 
of PBDEs have become a global issue and thus the search for the 
right remediation approaches for the PBDE-contaminated 
ecosystem is of the greatest reputation. Currently, three 
remediation pathways frequently used for PBDEs are anaerobic 
biodegradation, photochemical degradation and adsorption. For 
example, PBDE-47 was reported to be photodegraded in the 
presence of non-ionic surfactant solutions Brij 35, Brij 58, Tween 
80, with the greatest result shown by Brij 35, and the most 
prevalent photoproducts were BDE-28, BDE-15 and BDE-3 [13].  
 

The vast amount of money needed to operate carbon-based 
adsorption is limited, despite it being widely used as an efficient 
adsorbent for the elimination of many organic pollutants. There 
is therefore urgent need for inexpensive, robust and non-
hazardous adsorbents. These substitute adsorbents may be 
bioadsorbents and waste from agriculture or manufacturing. 
Agricultural wastes such as spent leaves of tea [14], pineapple 
leaf [15] and inexpensive materials like chitosan and zeolites [16] 
have been successfully utilized for adsorbing compounds such as  
dyes [17–24] and heavy metals [25–35]. 
 

In particular, there are four enticing factors that have 
brought out agricultural waste applications, such as alternative 
adsorbents; a) highly abundant; b) not/simple pretreatment or 
activation before use; c) regeneration free, compared to carbon 
activation requiring regeneration; resulting in the adsorbents 
needing less control and maintenance. The use of these possible 
adsorbents in waste water management is sadly adversely 
impacted by poor post-application disposal and lack of 
documentation for actual wastewater systems [3]. Coconut palm 
trees are widely cultivated in various tropical countries, such as 
Malaysia, Taiwan, China, India, Thailand, and Indonesia. The 
leaves are often used as compost or they are burnt on the field 
after harvest.  

 
The major components of these leaves are cellulose, lignin, 

and hemicelluloses; thus studies have measured how low-cost 
adsorbents for waste water management are used in subtropical 
plants and leaves [36–38]. The use of these leaves is doubly 
valuable, since they are an adsorbent naturally and eliminate 
agricultural waste. The usage is particularly advantageous 
because this waste not only turns it into an essential material but 
also stops it from being burnt on site and minimizes the cost of 
disposal [39–44]. 
 

In a previous study, the evaluation of coconut palm leaf 
powders as potential low-cost adsorbents for removing BDE-3 
and BDE-15 from aqueous solutions was attempted [3]. To 
understand the process of biosorption of compounds, the proper 
assignment of kinetics and bio-sorption isotherms is desperately 
essential. Linearization of an otherwise nonlinear curve will 
trigger problems with the datas’ error structure, making estimates 
of uncertainties of kinetic parameters, typically depicted as 95 
percent confidence interval, tremendously hard [45]. In this study 
the biosorption of BDE-3 from coconut palm leaf powders [3] 
was remodeled with several more kinetic models and then 
regressed using nonlinear regression method and assessment of 
the best mode was carried out using various error function 
analysis. 
 
 
 
 
 
 
 

METHODS 
 
Data acquisition, handling and fitting 
Data from figure 4 from a published work [3] were first digitized 
using the software Webplotdigitizer 2.5 [46]. The data need to be 
converted into the sorption capacity at time t or qt of which this 
study did to be able to calculate the sorption capacity at 
equilibrium or qe. will convert which is the amount of PBDE 
absorbed per g of adsorbent. The data were then nonlinearly 
regressed using the curve-fitting software CurveExpert 
Professional software (Version 1.6) using several popular kinetic 
models (Table 1). 
 
Table 1. Kinetic models utilized in this study. 
 

Model Equation Reference 
Pseudo-1st order 𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒(1 − 𝑒𝑒−𝐾𝐾1𝑡𝑡) 

 
[47] 

Pseudo-2nd order 
𝑞𝑞𝑡𝑡 =

𝐾𝐾2𝑞𝑞𝑒𝑒2𝑡𝑡
(1 + 𝐾𝐾2𝑞𝑞𝑒𝑒𝑡𝑡)

 
[48] 

Elovich 𝑞𝑞𝑡𝑡 =
1

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
+

1
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

 [49] 

 
 
Statistical analysis 
 
The RMSE was calculated according to Eq. (1) [45], adjusted R2 
(Eqns. 2 and 3), corrected Akaike information criterion (AICc) 
is utilized [50] and calculated as in Eqn. 4), Bayesian 
Information Criterion (BIC) (Eqn. 5) [51], Hannan–Quinn 
information criterion (HQC) (Eqn. 6) [50] and Ross [52] 
Accuracy Factor (AF) and Bias Factor (BF) (Eqns. 7 and 8) were 
utilized as discriminatory method to select for the best model. 
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𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑘𝑘. ln (𝑛𝑛)   (Eqn. 5) 

 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛 × 𝑙𝑙𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑘𝑘 × 𝑙𝑙𝑙𝑙(ln𝑛𝑛)  (Eqn. 6) 
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RESULTS AND DISCUSSION 
 
The absorption kinetics data that were fitted using non-linear 
regression and sstatistical analysis based on root-mean-square 
error (RMSE), adjusted coefficient of determination (adjR2), bias 
factor (BF), accuracy factor (AF), corrected AICc (Akaike 
Information Criterion), Bayesian Information Criterion (BIC) 
and Hannan–Quinn information criterion (HQC) shows that the 
Elovich model was the poorest in fitting and that the Pseudo-2nd 
order model is the best model. Kinetic analysis using the Pseudo-
2nd order model gave a value of equilibrium sorption capacity qe 
for 0.01 g per L adsorbent of 488.16 mg g-1 (95% confidence 
interval from 463.68 to 512.64) and a value of the Pseudo-2nd-
order rate constant, k2 of 0.00019 (95% confidence interval from 
0.00010 to 0.00027) while the equilibrium sorption capacity qe 
for 0.002 g per L adsorbent of 2403.61 mg g-1 (95% confidence 
interval from 2313.99 to 2493.22) and a value of the Pseudo-2nd-
order rate constant, k2 of 0.000043 (95% confidence interval from 
0.000027 to 0.000059).   
 

The discrepancy from the originally published works is as a 
result of the values of the data was not converted into the sorption 
capacity at time t or qt of which will not give the calculated the 
sorption capacity at equilibrium or qe. The values obtained in this 
work is not much different from the values obtained using similar 
modelling exercise of BDE-3 to spent black tea waste [53]. 
 
Table 2. Error function analysis of regressed models of the biosorption 
of 3-BDE on 0.01 g per L of coconut leaves powder. 
 
Model p RMSE adR2 AICc BIC HQC AF BF 
Pseudo-1st order 2 23.410 0.976 59.79 45.68 44.45 1.037 1.000 
Pseudo-2nd order 2 13.133 0.993 51.70 37.59 36.36 1.019 1.000 
Elovich 2 43.014 0.919 68.31 54.20 52.97 1.073 0.933 
 
Note: 
RMSE Root mean Square Error 
p no of parameters 
adR2 Adjusted Coefficient of determination 
BF  Bias factor   
AF  Accuracy factor 
AICc  Adjusted Akaike Information Criterion 
BIC Bayesian Information Criterion 
HQC Hannan-Quinn Criterion 
 
 
Table 3. Error function analysis of regressed models of the biosorption 
of 3-BDE on 0.002 g per L of coconut leaves powder. 
 

 
Model p RMSE adR2 AICc BIC HQC AF BF 
Pseudo-1st order 2 95.479 0.984 79.47 65.36 64.13 1.029 1.000 
Pseudo-2nd order 2 49.034 0.996 70.14 56.03 54.80 1.013 1.000 
Elovich 2 354.361 0.513 97.83 83.72 82.49 1.009 1.000 
 
Note: 
RMSE Root mean Square Error 
p no of parameters 
adR2 Adjusted Coefficient of determination 
BF  Bias factor   
AF  Accuracy factor 
AICc  Adjusted Akaike Information Criterion 
BIC Bayesian Information Criterion 
HQC Hannan-Quinn Criterion 
 
 
 
 

 
 
Fig. 1. Kinetics of on the biosorption of BDE-3 on 0.01 g per L coconut 
leaves powder modelled using the Pseudo-1st model.  
 

 
 
Fig. 2. Kinetics of on the biosorption of BDE-3 on 0.01 g per L coconut 
leaves powder modelled using the pseudo-2nd order model.  
 

 
Fig. 3. Kinetics of on the biosorption of BDE-3 on 0.01 g per L coconut 
leaves powder modelled using the Elovich model.  
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Fig. 4. Kinetics of on the biosorption of BDE-3 on 0.002 g per L 
coconut leaves powder modelled using the Pseudo-1st model.  
 

 
 
Fig. 5. Kinetics of on the biosorption of BDE-3 on 0.002 g per L 
coconut leaves powder modelled using the pseudo-2nd order model.  
 

 
 
Fig. 6. Kinetics of on the biosorption of BDE-3 on 0.002 g per L 
coconut leaves powder modelled using the Elovich model.  
 
 
 
 
 
 
 

Table 2. Constants obtained from the modelling exercise for BDE-3 
using 0.01 g per L adsorbent (coconut leaves powder). 
 
Kinetic model Parameter Values (95% confidence 

interval) 
Values from [3] 

Pseudo-1st 
order 

qe (mg per g) 458.07 (428.65 to 487.49) -n.a. 
k1 (s-1) 0.05 (0.029 to 0.069) -n.a. 

Pseudo-2nd 
order 

qe (mg per g) 488.16 (463.68 to 512.64) -n.a. 
K2 (s-1) 0.00019 0.00010 to 

0.00027 
-n.a. 

Elovich α (mg per g per 
s) 

0.02 (0.015 to 0.026) -n.a. 

β (g per mg) 3269.14 (-3638.67 to 
10176.96) 

-n.a. 

Note: -n.a. not available 
 
 
Table 3. Constants obtained from the modelling exercise for BDE-3 
using 0.002 g per L adsorbent (coconut leaves powder). 
 
Kinetic model Parameter Values (95% confidence 

interval) 
Values from [3] 

Pseudo-1st 
order 

qe (mg per g) 2270.75 (2151.68 to 
2389.81) 

-n.a. 

k1 (s-1) 0.052 (0.034 to 0.070) -n.a. 
Pseudo-2nd 
order 

qe (mg per g) 2403.61 (2313.99 to 2493.22) 4.43 
K2 (s-1) 0.000043 (0.000027 to 

0.000059) 
0.0284 

Elovich α (mg per g per 
s) 

0.005 (0.004 to 0.006) -n.a. 

β (g per mg) 40381.01 (-45785.40 to 
126547.42) 

-n.a. 

Note: -n.a. not available 
 
 

Two types of adsorption kinetics are commonly used; 
pseudo-1st order and pseudo-2nd order. In the late 19th century 
Lagergren introduced the pseudo-1st order kinetics while the 
pseudo-2nd order kinetics was introduced in the middle of the 80’s 
and gain prominence in 1999 when Ho and McKay suggest the 
pseudo-2nd order kinetics to be the dominant mechanism and the 
thousands of literature citations have proven this point [54]. 
These kinetical models can reveal the potential rate regulation 
measures and sorption mechanism such as mass transfer 
processes and whether reactions are physical or chemical.  

 
There is a constant concentration of the adsorbate in the 

pseudo first order reaction when it is set at the level of saturation, 
resulting in a constant adsorption of the adsorbate. In the event 
that film diffusion regulates the rate, by stirring the device and 
using smaller particle size adsorbents, the reciprocal relationship 
between rate and particle size, the distribution coefficient and the 
film thickness can be resolved. The name physisorption is given 
in this situation as the rate-limiting process is diffusion and is 
independent of the degree of both reactants (physical exchange). 
 

It is expected that chemical reactions regulate the rate-
control phase, a mechanism known as chemisorption, in a 
reaction controlled by a pseudo-2nd order reaction. Under these 
conditions, a reversible second-order reaction at low 
adsorbate/adsorbent ratios fits the sorption kinetics, whereas two 
competitive second-order reversible reactions occur at higher 
sorbate/sorbent ratios [55]. Critics have, however, cautioned 
against rushing to the conclusion that the process is a 
chemisorption based solely on evidence from kinetics. Further 
proof, including the measurement effects of the activation 
energies by repeating the experiment at different temperatures 
and also by testing the process speeds based on the sizes of the 
adsorbent particle, should be supplemented. [56]. Furthermore, 
the data points need to be increased to more than twenty, 
especially at earlier times, and this will help distinguish 
statistically whether a reaction is in the first or second order. 
Moreover, instead of the common correlation coefficient value, 
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advanced error functions should be used as discriminant error 
functions as carried out in this work [57–59]. 
 

In the original work, the pseudo-2nd order kinetics model 
was used without resorting to existing comparison of the 
mathematical model, but the fact that the PSO model is the better 
model demonstrates its broad use and suitability in biosorption 
work. In many instances, the PSO model has been identified as 
the best model [22,60–62] including the adsorption of tris-(2,3-
dibromopropyl) isocyanurate are best modelled using a Pseudo-
1st order  [63], adsorption of flame retardants such as 
tetrabromobisphenol A [64,65], BDE-47 [66], 4-BDE [59],  
hexabromocyclododecane [67], and the sorption of the OPFRs; 
tri(n‐butyl) phosphate (TnBP), tris(2‐butoxyethyl) phosphate 
(TBEP), and tris(2‐chloroethyl) phosphate (TCEP) on Pahokee 
peat soil [68], the adsorption of tetrakis (hydroxymethyl) 
phosphonium chloride (THPC) on biochar [69] and the 
adsorption of tricresyl phosphate onto graphene nanomaterials 
[70]. 
  
CONCLUSION 
 
Three kinetics models were successfully used to fit BDE-3 
sorption data on coconut leaves powder, which pseudo-1st, 
pseudo-2nd and Elovich. Statistical analysis based on root-mean-
square error (RMSE), adjusted coefficient of determination 
(adjR2), accuracy factor (AF), bias factor (BF), corrected AICc 
Bayesian Information Criterion (BIC), (Akaike Information 
Criterion) and Hannan–Quinn information criterion (HQC) 
showed that the Pseudo-2nd order model is the best model giving 
valuable parameters such as the equilibrium sorption capacity qe 
and the Pseudo-2nd-order rate constant, k2, which can be further 
utilized in isothermal modelling analysis.  
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