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INTRODUCTION 
 
The newly emerged corona virus, SARS-CoV-2, which appeared 
in Wuhan China, in the last quarter of 2019, has spread to all 
corners of the world inflicting acute and severe health and 
economic catastrophe in both developed and developing 
countries, bringing the world to a near-complete standstill for the 
first time in a century [1,2,3,4]. The virus belongs to the family of 
coronavirus (CoV), that have previously given rise to many 
zoonotic infections over the past centuries [4]. COVID-19 was 
declared global pandemic on 11th of March 2020 and is still 
ravaging the humanity with current death tolls exceeding half a 

million individuals and higher than 10 million people are infected 
worldwide. In the United States alone, there are more than 3.9 
million infected case and approximately 142,000 death cases as 
at 20th July 2020. 
  

Microorganisms such as bacteria and viruses showed 
sigmoidal growth pattern (curve) on their substrate (nutrients) 
including human, starting with a lag period (λ) just after t = 0, 
followed by logarithmic (exponential) and stationary phases and 
finally the organism enters the death phase. To describe 
microbial growth curve and obtain important fitting parameters 
like lag period (λ), maximum specific growth rate (μm) and 
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 ABSTRACT 
The current global COVID-19 pandemic is causing a lot of deaths and economic losses 
worldwide. The modelling of future death and cases is a very important aspect of managing the 
severity of the pandemic. In this paper, we demonstrated potential use of various growth models 
like modified Gompertz, Von Bertalanffy, Baranyi-Roberts, modified Logistics, Morgan-Mercer-
Flodin (MMF), modified Richards and Huang in modeling the epidemic trend of COVID-19 in 
the form of total number of infection cases of SARS-CoV-2 in the United States as at 20th July 
2020. The Morgan-Mercer-Flodin (MMF) model showed best fitting to the data set with least 
RMSE and AICc and the highest adjusted R2 values. The values for Accuracy and Bias Factors 
were closest to 1.0. Despite this, further statistical diagnosis of the data showed nonnormality 
with the residuals failing the runs and homoscedasticity tests. Interestingly, this was addressed 
by remodeling the data from day 132 onwards using the MMF model, which results in improving 
the statistical diagnosis. The fitting coefficients obtained include maximum growth rate (logµm) 
of 0.03 (95% CI 0.023 - 0.039), curve constant (δ) that affects the inflection point of 1.42 (95% 
CI 1.304 - 1.540), lower asymptote value (β) of 6.454 (95% CI 6.451 - 6.456) and maximal total 
number of cases (ymax) of 7,906,786 (95% CI 6,652,732 - 10,839,269). The MMF model predicted 
that by 20th of August 2020 the total number of cases in the United States will be 5,560,168 (95% 
CI of 5,295,337 - 5,838,243), while the figure will rise to 6,366,506 (95% CI of 5,791,751 - 
6,998,298) by 20th of September 2020. The predictive potential of the utilized model makes it a 
powerful tool for epidemiologist monitoring the severity of SARS-CoV-2 (COVID-19) in the 
United States in the near future. Although, predictions from this model as with any other model, 
need to be taken with caution due to unpredictable nature of COVID-19 situation locally and 
globally. 
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asymptotic values (A), various sigmoidal functions including 
Morgan-Mercer-Flodin (MMF), modified Gompertz, modified 
Richards, Von Bertalanffy, Baranyi-Roberts and modified 
Logistics are utilized.  
 

Mathematical models including quantitative, theoretical and 
simulation could be used to predict COVID-19 pandemic cases 
in the United States. Models such as von Bertalanffy, modified 
Gompertz and logistics have shown good predictive ability in 
modelling the COVID-19 pandemic [5].  This work is aimed at 
assessing the robustness of various available models like 
Gompertz [6,7], Richards [7,8], Morgan-Mercer-Flodin (MMF) 
[9], Logistic [7,10], Buchanan three-phase [11], Baranyi-Roberts 
[12], Von Bertalanffy [13,14] and recently Huang model [15] in 
fitting and evaluating the total infection case of SARS-CoV-2 
(epidemic trend of COVID-19) in the United States by 20th of 
July 2020. 
 
MATERIALS AND METHODS  
 
Data from Worldommeter was used to acquire the total number 
of infected cases in the United States as at 20th of July 2020 [16]. 
The data set was converted to logarithmic values, while 
considering the data after the first 20 infection cases as the 
starting time. 
 
Statistical analysis 
The frequently used statistical discriminators like Root-Mean-
Square Error (RMSE), adjusted coefficient of determination (R2) 
and corrected AICc (Akaike Information Criterion), were used to 
find the best fitting model. RMSE was calculated based on Eqn. 
(1) [17], the smaller the number of parameters the smaller RMSE 
value. n is the number of experimental data, p is the number of 
parameters, while Pdi and Obi are predicted and experimental 
data, respectively. 
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The adjusted R2 was used to determine the quality of nonlinear 
model, thus overcome the number of parameters in a model 
ignored by coefficient of determination, R2. In equations Eqns. 2 
and 3, RMS is the Residual Mean Square, while the total variance 
of y-variable is denoted by S2y. 
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The AIC, equilibrate between the goodness of fit of a model, and 
the complexity of that model and is based on information theory 
[18]. However, corrected Akaike information criterion (AICc) 
was used to handle data with a smaller number of values or 
having a high number of parameters [19]. The AICc is calculated 
as follows (Eqn. 4), where n indicate the quantity of data points 
and p signifies the quantity of parameters. Thus, a model with 
smallest AICc value is considered more likely correct [19].  
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The Accuracy and Bias factors (AF and BF) were calculated 
according to Ross [20] suggestion as follows; 
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Data fitting  
 
GraphPad Prism software (v 8.0) was used to conduct nonlinear 
regression to fit-in the SARS-CoV-2 infection cases using 
various growth curve models (Table 1). 
 
Table 1: Models used in fitting the SARS-CoV-2 infection cases in the 
United States. 
 
Model p Equation 
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Modified Gompertz 
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Modified Richards 
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Morgan-Mercer-
Flodin (MMF) 
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Baranyi-Roberts 
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Von Bertalanffy 
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Huang 
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Buchanan  
Three-phase linear 
model 
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Note: 
A= maximum no of cases lower asymptote; 
ymax= maximum no of cases upper asymptote; 
µm= maximum specific growth rate; 
v= affects near which asymptote maximum no of cases occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = time after first case is reported 
α,β,δ and k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
The lag time (h-1) or (d-1) can be calculated as h0=µm 
When data at time zero is 0 (Day after 1st case log 1=0 for COVID-19) the MMF is reduced to a 
3-parameter model 

 
 
 
 
 

Y = A, IF X < LAG 
Y=A + K(X ̶ λ), IF λ ≤ X ≥ XMAX 

Y = YMAX, IF X ≥ XMAX 
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RESULTS AND DISCUSSION 
 
Following the fitting exercise involving eight different 
models, it was revealed that all the tested models except 
for Buchanan-3-phase model show visually acceptable 
fitting (Figs 1 to 6). Morgan-Mercer-Flodin (MMF) was 
best performing model with least RMSE, AICc and highest 
adjusted R2 values. The model also has an excellent 
Accuracy and Bias factors with values closest to 1.0 
(Table 2). The fitting coefficients for the Morgan-Mercer-
Flodin (MMF) model are shown in Table 3. 
 
 

 
 
 
Fig. 1. Total number of SARS-CoV-2 infected cases in the United States as at 20th 
July 2020, as modelled using the Huang model. 
 
 
 

 
Fig. 2. Total number of SARS-CoV-2 infected cases in the United States as at 20th 
July 2020, as modelled using Baranyi-Roberts model. 

 
Fig. 3. Total number of SARS-CoV-2 infected cases in the United States as at 20th 
July 2020, as modelled using modified Gompertz model. 

 
Fig. 4. Total number of SARS-CoV-2 infected cases in the United States as at 20th 
July 2020, as modelled using Buchanan-3-phase model. 

 
Fig. 5. Total number of SARS-CoV-2 infected cases in the United States as at 20th 
July 2020, as modelled using modified Richard model. 
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Fig. 6. Total number of SARS-CoV-2 infected cases in the United States as at 20th 
July 2020, as modelled using Morgan-Mercer-Flodin (MMF) model. 

 
Fig. 7. Total number of SARS-CoV-2 infected cases in the United States as at 20th 
July 2020, as modelled using modified logistics model. 

 
Fig. 8. Total number of SARS-CoV-2 infected cases in the United States 
as at 20th July 2020, as modelled using von Bertalanffy model. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Statistical tests for various models utilized in modelling the total 
number of SARS-CoV-2 infected cases in the United States as at 15th July 
2020. 
 
Model p RMSE R2 adR2 AF BF AICc 
Huang 4 0.131 0.996 0.995 1.014 1.00 -187.91 
Baranyi-Roberts 4 0.111 0.997 0.997 1.013 1.00 -204.19 
modified Gompertz 3 0.244 0.985 0.984 1.021 1.00 -129.36 
Buchanan-3-phase 3 0.178 0.992 0.991 1.021 1.00 -160.97 
modified Richards 4 0.118 0.996 0.996 1.012 1.00 -198.22 
MMF 4 0.073 0.999 0.998 1.006 1.00 -245.99 
modified Logistics 3 0.151 0.994 0.994 1.012 1.00 -177.22 
von Bertalanffy 3 0.291 0.979 0.977 1.027 1.00 -111.59 
Note: p is number of parameters 
 
Table 3. Coefficients as modelled using Morgan-Mercer-Flodin (MMF) 
model. 
 

Parameters Value 95% Confidence interval 
µm 0.060 0.057 to 0.063 
δ 1.553 1.425 to 1.688 
ymax  4,305,266 3,706,807 to 5,093,309 
β 2.550 2.414 to 2.677 

 
Table 4. Predictions of COVID-19 pandemic for the United States based 
on the Morgan-Mercer-Flodin (MMF) model. 
 

Prediction Mean 95% Confidence 
interval 

Maximum number of total 
infected cases by the end of 
COVID-19 

4,305,266 3,706,807 to 5,093,309 
 
 

Maximum number of total infected 
cases by 15th August 2020 

3,150,889 2,914,497 to 3,406,455 

Maximum number of total infected 
cases by 15th September 2020 

3,399,583 3,108,520 to 3,717,899 

 
The fitting coefficients obtained from Morgan-Mercer-

Flodin (MMF) model were maximum growth rate (logµm) of 0.03 
(95% CI 0.030 - 0.036), curve constant (δ) that affects the 
inflection point of 1.100 (95% CI 1.029 - 1.171), lower asymptote 
value (β) of 2.55 (95% CI 2.414 - 2.677) and maximal total 
number of cases (ymax) of 4,305,266 (95% CI 3,706,807 - 
5,093,309). This model predicted that the total number of 
infected cases in the United States by 20th August 2020 will be 
384,258 (95% CI 368,567 - 400,618) and by 20th September 2020 
will rise to 508,412 (95% CI 482,797 - 535,387). This prediction 
has to be used with caution since the model underpredicts the 
number of days for the current number of cases (4,028,529 cases 
as at 21st July 2020).  

 
The major reason for this discrepancy appears likely to be 

due to data from June 25th 2020 onwards (roughly day 132 
onwards), which seems not adequately modelled by the Morgan-
Mercer-Flodin (MMF) model. A nonlinear trend was observed 
on visual inspection of the nonlogarithmic data (Fig. 9) from this 
point onwards. This unconformity to the MMF model is obvious 
when using statistical diagnostics for the curve where the 
residuals failed most of the normality and homoscedasticity tests 
(Table 5).  
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Table 5. Statistical diagnostic tests for the Morgan-Mercer-Flodin 
(MMF) model. 
 

Tests  
Diagnostic 
assessment 

Normality of Residuals  
Anderson-Darling (A2*) 1.556 
P value 0.0005 
Passed normality test 
(alpha=0.05)? No 
P value summary *** 
D'Agostino-Pearson omnibus 
(K2) 4.578 
P value 0.1013 
Passed normality test 
(alpha=0.05)? Yes 
P value summary ns 
Shapiro-Wilk (W) 0.9239 
P value 0.0033 
Passed normality test 
(alpha=0.05)? No 
P value summary ** 
Kolmogorov-Smirnov (distance) 0.1523 
P value 0.0054 
Passed normality test 
(alpha=0.05)? No 
P value summary ** 
Runs test  
Points above curve 23 
Points below curve 27 
Number of runs 5 
P value (runs test) <0.0001 
Deviation from Model Significant 
Test for homoscedasticity  
Rs of predicted Y vs. |residual| 0.2563 
P value (one tailed) 0.0362 
Passed (P > 0.05)? No 
  

 
Fig. 9. Predictions of COVID-19 pandemic for the United States based 
on the Morgan-Mercer-Flodin (MMF) model after 132th infected case 
 

The trend observed could be attributable to several 
underlying causes including an explosion in the infection rate due 
to lifestyle coupled with failure to strictly comply with lockdown 
or population rallying against lockdown measures. To better 
modelled the observed data, a discontinuous modelling was 
performed where total infected cases after day 132 onwards was 
remodelled using the Morgan-Mercer-Flodin (MMF) model. 
Results of the statistical analysis show improvement in all 
performing tests (Table 6). 
 
 
 
 
 
 

Table 6. Statistical diagnostic tests for Morgan-Mercer-Flodin (MMF) 
model from day 132 onwards. 
 

Normality of Residuals  
Anderson-Darling (A2*) 0.2663 
P value 0.6496 
Passed normality test (alpha=0.05)? Yes 
P value summary ns 
D'Agostino-Pearson omnibus (K2) 1.033 
P value 0.5965 
Passed normality test (alpha=0.05)? Yes 
P value summary ns 
Shapiro-Wilk (W) 0.9623 
P value 0.6182 
Passed normality test (alpha=0.05)? Yes 
P value summary ns 
Kolmogorov-Smirnov (distance) 0.1122 
P value >0.1000 
Passed normality test (alpha=0.05)? Yes 
P value summary ns 
Runs test  
Points above curve 8 
Points below curve 11 
Number of runs 7 
P value (runs test) 0.0882 
Deviation from Model Not Significant 
Test for homoscedasticity  
Rs of predicted Y vs. |residual| 0.1754 
P value (one tailed) 0.2363 
Passed (P > 0.05)? Yes 

 
 

The fitting parameters obtained from MMF remodelling 
include maximum growth rate (logµm) of 0.03 (95% CI 0.023 - 
0.039), curve constant (δ) that affects the inflection point of 1.42 
(95% CI 1.304 - 1.540), lower asymptote value (β) of 6.454 (95% 
CI 6.451 - 6.456) and maximal total number of infected cases 
(ymax) of 7,906,786 (95% CI 6,652,732 - 10,839,269) (Table 7). 
The MMF predicted that total number of infected cases for 
United States by upcoming 20th August and 20th September 2020 
will be 5,560,168 (95% CI 5,295,337 - 5,838,243) and 6,366,506 
(95% CI 5,791,751 - 6,998,298), respectively (Table 8).  
 
Table 7. Fitting coefficients for the Morgan-Mercer-Flodin 
(MMF) model after day 132 onwards data 
 

Parameters Value 95% Confidence interval 
µm 0.031 0.023 to 0.039 
δ 1.42 1.304 to 1.540 
ymax  7,906,786 6,652,732 to 10,839,269 
β 6.454 6.451 to 6.456 

 
 
Table 8. Predictions of COVID-19 pandemic for the United States based 
on MMF model after day 132 onwards data. 
 

Prediction Mean 95% Confidence interval 
Maximum number of total 
cases by the end of COVID-19 

7,906,786 6,652,732 to 10,839,269 

Maximum number of total 
cases by 15th of August 2020 

5,560,168 5,295,337 to 5,838,243 

Maximum number of total 
cases by 15th of September 2020 

6,366,506 5,791,751 to 6,998,298 
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The Morgan-Mercer-Flodin (MMF) model was originally 
developed to describe a variety of nutrient-response relationships 
in higher organisms [9]. Presently, the MMF model has found 
usefulness in various modelling exercise involving animals such 
as horse, sheep, rabbit and as well microorganisms 
[21,22,23,24,25]. The model was also used to monitor yield of 
oil palm [26], ethanol [27] and in financial activities [28]. 
Perhaps, whether the prediction is correct or not will depend on 
a case by case basis and include effectiveness of lockdown, 
increase rate of infection due to mutation of the virus, to name a 
few. Certainly, the models will be revisited every few months to 
remodel the data so that a better prediction can be obtained. 
 
CONCLUSION 
 
In conclusion, Morgan-Mercer-Flodin (MMF) model was the 
best fitting model in modelling the total number of SARS-CoV-
2 infected cases in the United States as at 20th July 2020 based on 
statistical values for RMSE (root-mean-square error), R2 
(adjusted coefficient of determination), AICc (corrected Akaike 
Information Criterion) BF (bias factor) and AF (accuracy factor) 
The MMF model predicted that by 20th of August 2020 the total 
number of cases in the United States will be 5,560,168 (95% CI 
of 5,295,337 - 5,838,243), while the figure will rise to 6,366,506 
(95% CI of 5,791,751 - 6,998,298) by 20th of September 2020. 
This model permits the prediction of total number of cases, which 
will vary based on a number of factors. The predictive potential 
of the utilized model makes it a powerful tool for epidemiologist 
monitoring the severity of SARS-CoV-2 (COVID-19) in the 
United States in the near future. 
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