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INTRODUCTION 
 
The setting up of many bases and the increase in the numbers of 
tourists and tourist’s ships in the cold region has introduced 
anthropogenic pollutants in Antarctica. Anionic surfactant such 
as sodium dodecyl sulphate has been reported to occur in the 
Antarctic Maxwell Bay and its adjacent sea areas at 
concentrations of up to 1.0 mg l-1 [1] and biodegradation of the 
surfactant by sea water bacteria has been reported [2]. Detergents 
are known to have detrimental effects to aquatic life [3–5]. 
According to literature data, anionic surfactants give toxic effects 
to various aquatic organisms at concentrations from 0.0025 to 
300 mg l−1 [6]. Another study indicated that exposure to SDS has 
a detrimental effect on oyster digestive gland, resulting in the 
perturbation of the metabolic and nutritional functions, and 

having a direct influence on oyster survival [7]. Toxicity towards 
invertebrates and crustaceans could occur as the considerable 
number of anionic surfactants released into water. The life cycle 
of aquatic animals has also been influenced by the anionic 
surfactants, modified the behavior of the fish such as erratic 
movements, muscle spasms and body torsion [8]. Due to this, 
remediation of SDS is of vital importance.  
 

Microbes are known for their ability to degrade organics 
including SDS [9–15], and their use as bioremediation agents is 
important for economical removal of xenobiotic pollutants. 
Biodegradation of anionic surfactant under aerobic conditions by 
the bacterium Pseudomonas sp. strain C12B was among the first 
to be studied [16], and to date quite a number of SDS-degrading 
bacteria have been isolated and characterized [10,11,17–29]. 
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 ABSTRACT 
The SDS-degrading bacterium Pseudomonas sp. strain DRY15 was strongly inhibited by heavy 
metals especially mercury. Growth of the SDS-degrading bacterium at various concentrations of 
mercury shows a sigmoidal pattern with lag periods ranging from 7 to 10 h. As the concentration 
of mercury was increased, the overall growth was inhibited with 1.0 g/L causing an almost 
cessation of bacterial growth. The modified Gompertz model was utilized to obtain growth rates 
at different concentrations of mercury. The growth rates obtained from the modified Gompertz 
model was then modelled according to the modified Han-Levenspiel, Wang, Liu, modified 
Andrews, the Amor and Shukor models. Out of the five models, only the Shukor, Wang, modified 
Han-Levenspiel and the Liu models were able to fit the curve, whilst the modified Andrews and 
Amor models were unable to fit the curves. The best model was Shukor based on the lowest 
values for RMSE and AICc, highest adjusted correlation coefficient (adR2) and values of AF and 
BF closest to unity. The parameters obtained from the Shukor model, which are Sm, µmax and n 
which represent critical heavy metal ion concentration (mg/L), maximum growth rate (h-1) and 
empirical constant values were 6.0 (95%, confidence interval from 5.87 to 6.14), 0.09 (95%, 
confidence interval of 0.086 to 0.096) and 4.2 (95%, confidence interval from 3.1 to 5.2), 
respectively. 
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Works on cold-adapted microbes with ability to degrade SDS are 
rare [11,30]. We have previously reported the isolation of such a 
bacterium and found that the degradation of detergent is strongly 
affected by heavy metals—zinc especially. In this work we 
model the inhibitory effect of SDS on the growth rate of this 
bacterium using several models. 
 
MATERIALS AND METHODS 
 
Growth and maintenance of bacterium 
The bacterium was sourced from our inhouse culture collection 
unit. The bacterium was grown and maintained on an SDS 
enrichment media in a 250 ml conical flask, incubated at 15 °C 
with shaking at 150 rpm on an orbital shaker. The basal salts (BS) 
medium contained the followings: KH2PO4, (1.36 g l-1), 
Na2HPO4, (1.39 g L-1), KNO3, (0.5 g L-1), MgSO4 (0.01 g L-1), 
CaCl2 (0.01 g L-1) and (NH4)2SO4 (7.7 g L-1). The medium also 
contained the following trace elements: ZnSO4.7H2O (0.01 g L-

1), MnCl2.4H2O (0.01 g L-1), H3BO4 (0.01 g L-1), CoCl2.6H2O 
(0.01 g L-1), FeSO4.2H2O (0.01 g L-1), CuCl2.2H2O (0.01 g L-1) 
and Na2MoO4.2H2O (0.01 g L-1) [18]. Filter-sterilized sodium 
dodecyl sulphate was added into the medium as a carbon source 
at the final concentration of 1.0 g l-1. Maintenance of the 
bacterium every fortnight was carried out on agar plate (1.5% 
agar) supplemented with solid sodium dodecyl sulphate. The 
growth rate of the bacterium at 0.1% SDS (w/v) in the presence 
of various concentrations of zinc of up to 6 mg L-1 was monitored 
under the same optimum conditions previously reported [12]. 
 
Primary growth modelling on SDS 
The maximum specific growth rate on SDS was modelled 
according to the modified Gompertz model as this model is 
routinely used in modelling the growth of microorganisms on 
xenobiotics [31–37]. The equation (Eqn. 1) is as follows; 
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The value obtained from this primary modelling exercise was 
then used to model the effect of metal as follows; 
 
 
Effect of metal on growth rate of on SDS 
The models utilized in this study is as follows (Table 1); 
 
 
Table 1. Metal inhibition models. 
 
Models Equation Ref 
Modified Han-
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Shukor 
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2019) 

 
 
 
 

Fitting of the data 
The nonlinear equations were fitted with a Marquardt algorithm 
using CurveExpert Professional software (Version 1.6). The 
algorithm searches the best method that minimizes the sum of the 
squares between predicted and measured values. The software 
calculates the starting values automatically through via the 
steepest ascent method. 
 
Statistical analysis 
The quality of fit of the models to the experimental data was 
evaluated statistically using the Root-Mean-Square Error 
(RMSE) (Eqn. 2), adjusted coefficient of determination (R2) 
(Eqn. 3), corrected AICc (Akaike Information Criterion) (Eqn. 
4), bias factor (BF) (Eqn. 5) and accuracy factor (AF) (Eqn. 6) 
as carried out in previous works [42–46]. 
 
 

    (Eqn. 2) 
 
 

   (Eqn. 3) 
 
 

  (Eqn. 4) 
 
 
n and p represent the number of data points and the number of 
parameters, respectively. A model is more likely to be correct if 
it has the smallest AICc value compared to other models [47]. 
 

   (Eqn. 5) 
 

   (Eqn. 6) 
 
 
RESULTS AND DISCUSSION 
 
Zinc shows an inhibitory effect to the growth of this bacterium 
and increasing the concentration of this toxicant further inhibited 
growth with a cessation of growth was observed at the zinc 
concentration of 6 mgL-1 (Fig. 1).  The growth of this bacterium 
was successfully modelled using the modified Gompertz model 
with visually acceptable fit to the datapoint was obtained (Fig. 
2). The specific growth rates obtained from this modelling 
exercise was then plugged into the above heavy metal inhibition 
kinetics models. Two of the models; Liu (Fig. 5) and Andrews 
(Fig. 6) show poor modelling with the Andrew models exhibiting 
some problem with the equations as the fitted data needs to pass 
through the origin, probably due to the Ks and Ki terms in the 
equation, and this might indicate the unsuitability of the Andrews 
model originally included in the works of Gopinath et al [48] in 
modelling the effect of heavy metals to the specific growth rate 
in general.  
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The best model was Shukor based on the lowest values for 
RMSE and AICc, highest adjusted correlation coefficient (adR2) 
and values of AF and BF closest to unity (Table 2). The 
parameters obtained from the Shukor model, which are Sm, µmax 
and n which represent critical heavy metal ion concentration (mg 
L -1), maximum growth rate (h-1) and empirical constant values 
were 6.0 (95%, confidence interval from 5.87 to 6.14), 0.09 
(95%, confidence interval of 0.086 to 0.096) and 4.2 (95%, 
confidence interval from 3.1 to 5.2), respectively. 
 

 
 
Fig. 1. The effect of increasing concentrations of zinc to the growth of 
Pseudomonas sp. strain DRY15 on SDS. Data represent mean standard 
deviations (three replicates). 
 
 

 
 
 
Fig. 2. The effect of increasing concentrations of zinc to the growth of 
Pseudomonas sp. strain DRY15 on SDS as fitted to the modified 
Gompertz model. 
 
 
 

 
Fig. 3. The effect of increasing concentrations of zinc to the maximum 
specific growth rate of Pseudomonas sp. strain DRY15 on SDS as fitted 
to the Wang model. 
 

 
Fig. 4. The effect of increasing concentrations of zinc to the maximum 
specific growth rate of Pseudomonas sp. strain DRY15 on SDS as fitted 
to the Hans-Levenspiel model. 
 

 
Fig. 5. The effect of increasing concentrations of zinc to the maximum 
specific growth rate of Pseudomonas sp. strain DRY15 on SDS as fitted 
to the Liu model. 
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Fig. 6. The effect of increasing concentrations of zinc to the maximum 
specific growth rate of Pseudomonas sp. strain DRY15 on SDS as fitted 
to the Andrews model. 
 

 
 
Fig. 7. The effect of increasing concentrations of zinc to the maximum 
specific growth rate of Pseudomonas sp. strain DRY15 on SDS as fitted 
to the Shukor model. 
 
 
Table 2. Error function analysis of the effect of increasing concentrations 
of zinc to the maximum specific growth rate of Pseudomonas sp. strain 
DRY15 on SDS as fitted to various secondary models. 
 
Model p RMSE adR2 AF BF AICc 
Wang 3 0.01 0.92 1.06 0.98 -38.56 
Levenspiel 3 0.01 0.94 1.05 0.98 -39.08 
Liu 2 0.02 -0.90 1.14 0.92 -36.19 
Andrews 4 0.06 -4.14 2.03 0.49 32.57 
Shukor 3 0.00 0.99 1.02 0.99 -51.71 
 
Note: 
RMSE Root mean Square Error 
p  no of parameters 
adR2  Adjusted Coefficient of determination 
BF   Bias factor 
AF   Accuracy factor 
AICc   Adjusted Akaike Information Criterion 
 

In a similar study, zinc inhibits the biodegradation of Congo 
red by Pseudomonas sp. mutant [48] where there was an 
observable increase in lag period with increasing Zn (II) 
concentrations. Similarly, the specific growth rate decreasing 
gradually with increasing Zn (II) concentrations up to 200 mg L-

1 of Zn (II) and later surged rapidly towards zero. In another 
work, the inhibition constants (Ki) for the Andrews model in 

modelling the effect of zinc on the growth rate of Bacillus sp. and 
Pseudomonas sp. on monoaromatics such as ethylbenzene, o-
xylene and toluene ranged from 20 to 26 mg L-1 [49] indicating 
that the growth rate on SDS  is severely inhibited by zinc. To 
combat this issue, soil amendments technique such as the 
addition phosphate, calcium carbonate,  manganese oxide, and 
magnesium hydroxide to reduce the solubility of zinc and to 
allow bioremediation to proceed [50,51]. Alternatively, 
immobilization of the SDS-degrading bacterium could offer 
some protection to combat the toxicity metal ions in general [52].  
 
CONCLUSION 
 
The biodegradation of SDS by an Antarctic bacterium was found 
to affect the growth rate on SDS. The best model to study this 
inhibition to the growth rate was Shukor of which the model 
predicted accurately the concentration of zinc that caused a 
complete cessation of growth rate.  
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