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INTRODUCTION 
 
Copper (Cu) is abundant in the surroundings and required for the 
conventional growth and metabolic process of most living 
creatures. Irregular quantities of copper ingestion may range 
between quantities so little as to stimulate a dietary insufficiency 
to quantities excessive they can be extremely harmful. Copper is 
one of the first metals labored by people some seventy to eighty 
centuries in the past [1]. The first recognized item of hammered 
copper was discovered approximately 6000 BCE. The copper 
alloy brass originated in Roman periods. Copper stems from the 
Latin cuprum, which is a corruption of cyprium, Cyprus is the 
source of Egyptian and Roman copper [1]. The metabolic 
significance of copper in animals and plants had not been thought 
prior to the 1920’s when illnesses as a result of copper 
insufficiency turned to be acknowledged. Copper insufficiency 
in vertebrates, for instance, is associated to anemia, 
gastrointestinal disorder, aortic aneurisms, bone development 
irregularities, and death [2]. 

 
Toxicity to copper in terrestrial higher plants is uncommon 

but happens on mining areas and instances where copper-rich 
manures or fungicides are utilized exceedingly [3]. Copper is 
considered the most dangerous of the heavy metals in marine and 
freshwater ecology, and frequently builds up and results in 
irreparable damage to some species at levels merely over the 
quantities needed for growth and reproduction [4]. On the other 
hand, in comparison with lower forms, mammalians and birds are 
relatively not affected to copper [1].  

 
Copper pollution in the recent years has only just began to 

take centre stage with several reports studying the effect of 
copper exposure to Antarctic organisms [5,6]. In anticipation of 
a copper pollution in the future in the Arctic and Antarctica, 
several remediation approach has been suggested with 
biosorption being one of the least destructive [7,8].  
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 ABSTRACT 
Heavy metals pollution in the Antarctica is emerging as an important problem due to 
anthropogenic activities. Bioremediation of metal pollution especially copper in Antarctica in the 
future using biosorption is the most environmental-friendly method. Biosorption using Durvillaea 
antarctica, an alga that lives in the Antarctic region does not involve the introduction of new 
potentially foreign species. In this study, the isotherms of copper biosorption by the alga is 
modelled according to various models ranging from one to five parameters models such as Henry, 
Langmuir, Dubinin-Radushkevich, Freundlich, BET, Toth, Sips, Fritz-Schlunder IV, Baudu and 
Fritz-Schlunder V. All gave visually acceptable fitting with the exception of the Henry model.  
Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of determination 
(adjR2), bias factor (BF), accuracy factor (AF) and corrected AICc (Akaike Information Criterion) 
showed that the Sips model is the best model. The calculated Sips parameters kS value of 12.52 
(95% confidence interval from 3.593 to 21.439), qmS value of 0.97 (95% confidence interval from 
0.905 to 1.026) and nS value of 0.67 (95% confidence interval from 0.531 to 0.806). 
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In order to understand the mechanism of biosorption in these 
organisms, the correct assignment of the kinetics and isotherms 
of biosorption is urgently needed. In many instances, a linearized 
from of an obviously nonlinear curve of these data is popularly 
reported in the literature. Linearization of nonlinear data disrupts 
the error structure of the data preventing and it is more difficult 
to estimate uncertainty, which is commonly shown in the form of 
a 95% confidence interval range [9]. In this study the published 
data from a copper biosorption experiment on the seaweed 
Durvillaea antarctica [7] is remodeled with several more 
isotherms models (Table 1) and then regressed using nonlinear 
regression method and assessment of the best mode was carried 
out using various error function analysis. 
 
Table 1. Isotherm models utilized in this study. 
 

 Model Formula References 
Single-parameter model 

1 Henry’s law 𝑞𝑞𝑒𝑒 = 𝐻𝐻𝐶𝐶𝑒𝑒  [10] 
Two-parameter models 

2 Langmuir 
isotherm 𝑞𝑞𝑒𝑒 =

𝑞𝑞𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝐶𝐶𝑒𝑒
1 + 𝑏𝑏𝑚𝑚𝐶𝐶𝑒𝑒

 

 

[11] 

3 Freundlich 
isotherm 𝑞𝑞𝑒𝑒 = 𝐾𝐾𝐹𝐹𝐶𝐶𝑒𝑒

1
𝑛𝑛𝐹𝐹  

 

[12] 

4 Dubinin-
Radushkevich 
isotherm 

𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 �−𝐾𝐾𝑚𝑚𝑚𝑚 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �1

+
1
𝐶𝐶𝑒𝑒
��
2
� 

[13,14] 

Three-parameter models 
5 Sips isotherm 

𝑞𝑞𝑒𝑒 =
𝐾𝐾𝑠𝑠𝑞𝑞𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒

1
𝑛𝑛𝑆𝑆

1 + 𝐾𝐾𝑠𝑠𝐶𝐶𝑒𝑒
1
𝑛𝑛𝑆𝑆

 

[15] 

6 Toth isotherm 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒

�𝐾𝐾𝑚𝑚 + 𝐶𝐶𝑒𝑒
𝑛𝑛𝑇𝑇�𝑛𝑛𝑇𝑇

 [16] 

7 Bet isotherm 𝑞𝑞𝑒𝑒
=

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒
(1 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒)(1 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒 + 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒) 

 

[17] 

Four-parameter models 
8 Baudu 

isotherm 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝐶𝐶𝑒𝑒

(1+𝑥𝑥+𝑦𝑦)

1 + 𝑏𝑏𝑚𝑚𝐶𝐶𝑒𝑒
(1+𝑥𝑥)  

[18] 

9 Fritz-
Schlunder-IV 
isotherm 

𝑞𝑞𝑒𝑒 =
𝐴𝐴𝐹𝐹𝑚𝑚𝐶𝐶𝑒𝑒

𝑎𝑎𝐹𝐹𝑆𝑆

1 + 𝐵𝐵𝐹𝐹𝑚𝑚𝐶𝐶𝑒𝑒
𝑏𝑏𝐹𝐹𝑆𝑆  

[19] 

Five-parameter models 
10 Fritz-

Schlunder-V 
isotherm 

𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝐹𝐹𝑚𝑚5𝐾𝐾1𝐶𝐶𝑒𝑒

𝛼𝛼𝐹𝐹𝑆𝑆

1 + 𝐾𝐾2𝐶𝐶𝑒𝑒
𝛽𝛽𝐹𝐹𝑆𝑆

 
[19] 

 
 
MATERIALS AND METHODS 
 
Data acquisition and fitting 
Data from Figure 3 from a published work [7] were downloaded 
and processed using the software Webplotdigitizer 2.5 [20] 
which digitizes the scanned figure into a comma separated data. 
This method has been utilized by many researchers and 
acknowledged for its reliability [21,22]. The generated comma 
separated data were then inputted into the curve-fitting software 
CurveExpert Professional software (Version 1.6) utilizing the 
Marquardt algorithm. 
 
Statistical analysis 
In several instances, the F-test has been used as a discriminatory 
method to choose the best model. However, F-test only works for 
nested models [9]. Due to this, other statistical discriminatory 
methods that take into account penalty to number of parameters 
used were utilized and include corrected AICc (Akaike 
Information Criterion), Root-Mean-Square Error (RMSE), bias 

factor (BF), accuracy factor (AF) and adjusted coefficient of 
determination (R2).  
 

The RMSE was calculated according to Eq. (i),  [9], and 
smaller number of parameters is expected to give a smaller 
RMSE values. n is the number of experimental data, Obi and Pdi 
are the experimental and predicted data while p is the number of 
parameters. 
 

( )

pn

ObPd
RMSE

n

i
ii

−

−
=

∑
=1

2

       (i) 
 

The coefficient of determination or R2 does not take into 
account the number of parameters in models, hence, in order to 
solve this issue, the adjusted R2 is utilized. the total variance of 

the y-variable is denoted by 
2
ys is and RMS is the Residual Mean 

Square (Eqns. ii and iii). 
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The Akaike Information Criterion (AIC) handles the trade-

off between the goodness of fit and the complexity of a model 
and is based on the information theory [23]. The Akaike 
information criterion (AIC) with correction or AICc is a 
corrected version of the AIC, and is utilized to handle data with 
a smaller number of values or a high number of parameters [24]. 
The AICc is calculated as follows (Eqn. iv); 
 

( ) ( )( )
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21212ln2
−−

++
+++






+=

pn
ppp

n
RSSnpAICc

  (iv) 
 
Where p signifies the quantity of parameters and n signify the 
quantity of data points. The model having the smallest AICc 
value is more likely correct [24].  
Accuracy Factor (AF) and Bias Factor (BF) are statistical 
evaluation of models originating from the work of Ross [25] to 
test for the goodness-of-fit of the models and were calculated 
(Eqns. v and vi) as follows;  
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RESULTS AND DISCUSSION 
 
The equilibrium data of a biosorption isotherm experiment from 
a published work [7] on the biosorption of copper by D. 
antarctica were analyzed using ten models—Henry, Langmuir, 
Dubinin-Radushkevich, Freundlich, BET, Toth, Sips, Fritz-
Schlunder IV, Baudu and Fritz-Schlunder V, and fitted using 
non-linear regression. The results of the fitting were visually 
acceptable (Figs. 2-10) with the exception of the one-parameter 
Henry model (Fig. 1). Statistical analysis based on root-mean-
square error (RMSE), adjusted coefficient of determination 
(adjR2), bias factor (BF), accuracy factor (AF) and corrected 
AICc (Akaike Information Criterion) showed that the Sips model 
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is the best model (Table 2). This is contrast with the published 
work using linearized form that shows that the best model was 
the Dubinin–Radushkevish model. The results from the 
published work will definitely be improved if a nonlinearized 
data is used instead of a linearized form as the latter tends to 
exhibit problem in data structure and it is more difficult to 
estimate uncertainty, which is commonly shown in the form of a 
95% confidence interval range [9]. The calculated Sips 
parameters were kS value of 12.52 (95% confidence interval from 
3.593 to 21.439), qmS value of 0.97 (95% confidence interval 
from 0.905 to 1.026) and nS value of 0.67 (95% confidence 
interval from 0.531 to 0.806). 
 
 

 
Fig. 1. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Henry model. 
 
 
 

 
Fig. 2. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Langmuir model.  

 
Fig. 3. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Dubinin-Radushkevich model.  
 

 
Fig. 4. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Freundlich model.  

 
Fig. 5. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the BET model.  
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Fig. 6. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Toth model.  

 
Fig. 7. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Sips model.  
 

 
Fig. 8. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Fritz-Schlunder IV model.  

 
Fig. 9. Biosorption isotherm of Cu (II) on D. antarctica dead biomass at 
pH 5.0 as modelled using the Baudu model.  
 

 
Fig. 10. Biosorption isotherm of Cu (II) on D. antarctica dead biomass 
at pH 5.0 as modelled using the Fritz-Schlunder V model. 
 
Table 2. Error function analysis of all isotherms. 
 

Model p RMSE adR2 AICc BF AF 
Henry 1 0.33 0.36 -13.09 0.36 2.92 
Langmuir 2 0.06 0.97 -38.36 1.30 1.37 
Dubinin-Radushkevich 2 0.06 0.97 -38.82 1.36 1.36 
Freundlich 2 0.15 0.79 -21.91 1.42 1.64 
Bet 3 0.05 0.98 -32.79 1.26 1.33 
Toth 3 0.05 0.98 -34.59 1.25 1.31 
Sips 3 0.03 0.99 -43.35 1.15 1.19 
Fritz-Schlunder IV 4 0.03 0.99 -30.88 1.11 1.15 
Baudu 4 0.03 0.99 -30.88 1.11 1.15 
Fritz-Schlunder V  5 0.03 0.99 -4.88 1.11 1.15 

 
The Sips model is a combination of the Langmuir and 

Freundlich isotherms useful for predicting the heterogeneous 
adsorption systems. This model triumphs over the drawback to 
problem in modelling increasing solute concentration associated 
with the Freundlich isotherm. The model efficiently reduces to 
the Freundlich isotherm at low solute concentrations,   while at 
excessive solute concentrations, the equation reduces to the 
Langmuir model of monolayer sorption capacity [26]. The Sips 
model has been successfully used to model numerous isothermal 
data of biosorption [27–32]. 
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CONCLUSION 
 
In conclusion, extensive modelling of a nonlinearized data shows 
a different best model compared to the original linearized data 
regression. The Sips model was found to be the best model based 
on extensive error function analysis as opposed to the original 
Dubinin–Radushkevish model. This difference can lead to a 
different interpretation of the mechanism of adsorption. 
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