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INTRODUCTION 
 
Oil spills which causes hydrocarbon pollutants are amongst the 
most reported pollution worldwide. Even pristine areas 
especially in the polar regions have been affected [1]. Their 
negative impacts on various organisms [2–4] have been 
documented and have prompted many researchers to search for 
solutions to remove these pollutants from the environment. The 
removal of pollutants particularly hydrocarbons are very 
challenging as temperature, climate and geographical aspects 
play major role and need to be carefully considered when finding 
the most effective bioremediation solution. One of the largest 
sources of hydrocarbon contaminant in the Polar Regions is oil 
spills from shipping accidents. Several of the most notable 
examples are the Exxon Valdez, Bahia Paraiso and Nella Dan 

accidents. It has been observed that the soils and sediments 
contaminated with hydrocarbon are teemed with hydrocarbon-
degrading microorganism [5]. An enhanced number of 
hydrocarbon degraders were reported in hydrocarbon 
contaminated soils from Scott Base, Marble Point and Wright 
Valley in Antarctica and in oil-polluted Antarctic seawater [6–8]. 
Ever since Antarctica is distinct as research base, numerous 
diesel-degrading bacteria from Antarctica have been isolated for 
bioremediation study. At this juncture despite these reports, the 
effect of diesel on the growth rate of diesel-degrading Antarctic 
bacteria has never been reported. This study adapts the study 
conducted previously Halmi et al. (2016) on modelling the 
kinetics growth of hexavalent molybdenum (Mo6+) reduction by 
the Serratia sp. strain MIE2 to study the growth inhibition 
kinetics of a Pseudomonas diesel-degrading strain from 

 

 

 

HISTORY 
 
Received: 11th May 2019 
Received in revised form: 7th of June 2019 
Accepted: 14th of June 2019 
 

 ABSTRACT 
Antarctica is one of the largest southernmost continent and most pristine wilderness areas left on 
earth. Over decades, human activities in this area have resulted in the accumulated pollution of 
hydrocarbon in the Antarctica mainly due to transportation and logistics activities. The sinking of 
the supply ships Nella Dan and Bahia Paraiso have resulted in diesel spillage that warrant the 
utilization and research on diesel-degrading microorganisms in the form of bioremediation to 
prepare for future disasters. A previously isolated diesel-degrading Pseudomonas sp. strain DRYJ3 
has shown effectiveness as a bioremediation tool. Its growth is however strongly inhibited as the 
diesel concentrations was increased. In this study the inhibitory effect of diesel on the growth rate 
of this bacterium is modelled according to the Luong, Aiba, Haldane, Hans-Levenspiel, Yano, 
Teissier and Monod models. Statistical evaluations indicated that the most suitable kinetic model 
to fit the growth rate on diesel was Luong’s model. The Luong’s constants; maximal growth rate, 
half saturation constant for maximal growth, maximum substrate concentration that growth ceases, 
and curve parameter that defines the steepness of the growth rate decline from the maximum rate 
symbolized by µmax, Ks, Sm, and n were 0.406 hr-1 (95% CI, 0.269 to 0.881), 0.194 (%v/v) (95% 
CI, 0.2877 to 0.390), 4.025 (%v/v) (95% CI, 3.820 to 4.229) and 0.378 (95% CI, 0.122 to 0.877) 
0.099, respectively. The Luong model predicted Sm value was close to the value of which no growth 
was observed experimentally suggesting the appropriateness of the model in adhering to observed 
values. 
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Antarctica. The relation between the specific growth rate (µ) of a 
population of microorganisms and the substrate concentration (S) 
is a valuable tool in biotechnology.  
 

The Monod equation has been widely used to describe 
growth-linked substrate utilization rate [10,11]. However, when 
a substrate such as diesel exhibits inhibition towards its own 
biodegradation, the original Monod model could not be used. In 
this case, its derivatives that have new constants that provided 
corrections for substrate have been devised instead. A variety of 
microbial growth of for this work biodegradation kinetic models 
are available. The generalization of the use of the Haldane model 
in literature to model substrate inhibition to growth or 
degradation rate is numerous literatures. This is despite the fact, 
that for a single substrate-inhibiting compound such as phenol, 
several other models have been demonstrated to be more 
accurate. For instance, aside from the predominantly reported 
Haldane model [12], several other different models have been 
found to be optimal such as Luong [13,14] and Edward [15]. 
Hence, the use of extensive models available could replace the 
Haldane in some circumstances. Without actually fitting these 
other models to the available growth or degradation rate data and 
proper statistical evaluation, the exclusive use of the Haldane 
model should not be used liberally. 
 

Previously, a diesel-degrading bacterium has been isolated 
from Antarctic soils and the kinetics of the growth of the 
bacterium has not been determined using various inhibitory 
growth kinetics models available [16] as shown in Table 1. This 
study is carried out to evaluate the use of such models in 
determining the effect of diesel on the growth rate of this 
bacterium. 
 
Table 1. Various mathematical models developed for degradation 
kinetics involving substrate inhibition.  
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Note: 
qmax maximal degradation rate 
Ks   half saturation constant for maximal degradation 
Sm   maximal concentration of substrate tolerated  
m, n, K curve parameters 
S  substrate concentration  
P  product concentration 

 

MATERIALS AND METHODS 
 
Growth and Maintenance of Pseudomonas sp. strain DRYJ3 
Antarctica isolated Pseudomonas sp. strain DRYJ3 from [16] 
was grown in a 100 ml media consisted of a modified basalt salt 
media (BSM) at pH 7.0. The modified BSM was composed of 
(per liter of distilled water): KH2PO4, 1.360 g; Na2HPO4, 1.388 
g; KNO3, 0.5 g; MgSO4, 0.01 g; CaCl2, 0.01 g; (NH4)2SO4, 7.7 g; 
and 100 ml of a mineral solution containing 0.01 g of 
ZnSO4.7H2O, MnCl2.4H2O, H3BO4, CoCl2.6H2O, Fe2SO4.2H2O, 
CuCl2.2H2O, NaMoO4.2H2O. The flasks were incubated at 
10±0.5 °C and 150 rpm (YIH DER, Taiwan) [16]. Diesel was the 
only carbon source supplied for bacterial growth and 
acclimatization. The growth of the bacterium at various 
concentrations of diesel was monitored by the plate count method 
and the specific growth rate at each diesel concentrations was 
obtained via nonlinear regression using the modified Gompertz 
model (results published elsewhere). 
 
Fitting of the data 
The nonlinear equations were fitted to the growth data by 
nonlinear regression with a Marquardt algorithm that minimizes 
sums of square of residuals using CurveExpert Professional 
software (Version 1.6). This is a search method to minimize the 
sum of the squares of the differences between the predicted and 
measured values.  
 
Statistical analysis 
To decide whether there is a statistically substantial difference 
between models with different number of parameters, in terms of 
the quality of fit to the same experimental data was statistically 
assessed through various methods such as the root-mean-square 
error (RMSE), adjusted coefficient of determination (R2), bias 
factor (BF), accuracy factor (AF) and corrected AICc (Akaike 
Information Criterion). 
 

The RMSE was calculated according to Eq. (1), where Pdi 
are the values predicted by the model and Obi are the 
experimental data, n is the number of experimental data, and p is 
the number of parameters of the assessed model. It is expected 
that the model with the smaller number of parameters will give a 
smaller RMSE values [24] [9]. 
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In linear regression models the coefficient of determination 

or R2 is used to assess the quality of fit of a model. However, in 
nonlinear regression where difference in the number of 
parameters between one model to another is normal, the adoption 
of the method does not readily provide comparable analysis. 
Hence an adjusted R2 is used to calculate the quality of nonlinear 
models according to the formula where RMS is Residual Mean 

Square and
2
ys is the total variance of the y-variable (Eqns. 2 and 

3) [9].  
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The Akaike information criterion (AIC) provides a means 
for model selection through measuring the relative quality of a 
given statistical model for a given set of experimental data [25]. 
For an output of a set of predicted model, the most preferred 
model would be the model showing the minimum value for AIC. 
This value is often a negative value, with for example; an AICc 
value of -10 more preferred than the one with -1. The equation 
incorporates number of parameters penalty, the more the 
parameters, the less preferred the output or the higher the AIC 
value. Hence, AIC not merely rewards goodness of fit, but in 
addition does not encourage using more complicated model 
(overfitting) for fitting experimental data. Since the data in this 
work is small compared to the number of parameters used a 
corrected version of AIC, the Akaike information criterion (AIC) 
with correction or AICc is used instead. The AICc is calculated 
for each data set for each model according to the following 
equation (Eqn. 4) [9]; 
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Where n is the number of data points and p is the number of 

parameters of the model. The method takes into account the 
change in goodness-of-fit and the difference in number of 
parameters between two models. For each data set, the model 
with the smallest AICc value is highly likely correct [24]. 
 

Accuracy Factor (AF) and Bias Factor (BF) to test for the 
goodness-of-fit of the models as suggested by Ross [26] were 
also used (Eqns. 5 and 6).  Halmi et al., [27] have also adopted 
the same model. The Bias Factor equal to1 indicate a perfect 
match between predicted and observed values. For microbial 
growth curves or degradation studies, a bias factor with values < 
1 indicates a fail-dangerous model while a bias factor with values 
> 1indicates a fail-safe model. The Accuracy Factor is always ≥ 
1, and higher AF values indicate less precise prediction. 
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RESULTS AND DISCUSSION 
 
Seven different growth models (Table 1) were used in this study 
to match the experimental data as studied by Halmi et al. (2016). 
The resultant fitting shows visually acceptable fitting (Fig. 1) 
with the exception of the Monod model. The drawback of the 
Monod model is that the distinctive, regulatory complex, 
variation response to environmental factors, and capacity of 
microbes to generate various products and by-products in 
inherent metabolism is disregarded. Statistical analysis (Table 2) 
showed the Luong model as the best model with best results for 
all error functions analysed. 
 

 
Fig 1. The growth of curves of Pseudomonas sp. strain DRYJ3 on various 
concentrations of diesel. The coefficient of variation for all data was less 
than 10% for all data and error bars were omitted for clarity. 
 
 
 

 
 
Fig 2. The growth of curve of Pseudomonas sp. strain DRYJ3 at 0.1% 
(v/v) diesel fitted by various growth models available in the literature.  
 
 
Table 2. Statistical analysis of the various fitting models. 
 

Model p RMSE adR2 AICc AF BF 
Luong 4 0.003 1.00 -69.96 0.99 1.03 
Aiba 3 0.010 0.97 -62.66 0.99 0.99 
Haldane 3 0.021 0.81 -48.82 1.03 1.14 
Han and 
L i l 

4 0.028 0.66 -7.64 1.02 1.14 
Yano 4 0.014 0.93 -44.76 1.01 1.06 
Teissier 4 0.019 0.89 -38.76 0.82 1.16 
Monod 2 0.069 -7.60 -35.58 0.82 1.68 

 
Note: 
p  no of paramaters 
RMSE   Root Mean Square Error 
Ra2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 
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The Luong’s constants; maximal growth rate, half saturation 
constant for maximal growth, maximum substrate concentration 
that growth ceases, and curve parameter that defines the 
steepness of the growth rate decline from the maximum rate 
symbolized by µmax, Ks, Sm, and n were 0.406 hr-1 (95% CI, 0.269 
to 0.881), 0.194 (%v/v) (95% CI, 0.2877 to 0.390), 4.025 (%v/v) 
(95% CI, 3.820 to 4.229) and 0.378 (95% CI, 0.122 to 0.877), 
respectively. The Luong model predicted Sm value was close to 
the value of which zero growth was examined signifying the 
relevance of the model in respecting to obtained values. 
 

Models such as Luong, Teissier and Hans-Levenspiel were 
developed due to the limitations of previous models such 
Haldane, Andrews and Noack, Web, and Yano in that these 
models unable to explain certain rare situations where growth 
rate became zero at very high substrate concentration [28]. In 
certain cases, at high substrate concentrations, microbial growth 
rate is inhibited by the substrate itself due to repressive and toxic 
effects. To date, the majority of the Luong model reported for 
xenobiotics-degrading bacteria centred on works on phenol-
degrading microbial works [13,27,29] and molybdenum-
reducing bacterium [30,31] and no work has been reported for 
the use of this model in modelling the effect of diesel on the 
growth rate of bacterium especially Antarctic bacterium to the 
best of our knowledge.  
 

The Luong equation can then be replaced with the calculated 
model parameters (Eqn. 7).  as follows; 
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CONCLUSION 
 
In this study, a complete cessation of maximum growth at a very 
high diesel concentration to the growth rate of the Antarctic 
bacterium Pseudomonas sp. strain DRYJ3 was observed and the 
use of various kinetics model in conjunction with a 
comprehensive statistical treatise of the model suggest that the 
Luong model was the best in fitting the growth rate at various 
diesel concentrations as opposed to the popular Haldane model. 
The Luong model allows for the modelling of the maximum 
concentration of substrate that results in the complete cessation 
of growth rate.   
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