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INTRODUCTION 

 
The extensive use of organophosphate (OP) and carbamate 
insecticides is a concern due to the neurotoxicity properties of 
the compounds [1]. These compounds inhibit the activities of 
important enzymes, such as cholinesterases, which are needed 
for functional nervous systems [2,3]. The rapid increase in 
production and use of organophosphorus (OP) and carbamate 
pesticides has raised concerns about their potential to cause 
harm to human and non-target wildlife populations. Pesticides 
enter waterways from agricultural and urban run-off, movement 
through soil into water courses and after direct application [4]. 
Aquatic organisms have been widely used as biomarkers to 
detect various pesticides and toxicants, which inhibit activities 
of cholinesterases [5–7]. An example of the effect of pesticides 
on fish has been tested on a snakehead fish, Channa striata [8]. 

Similar types of fish that are natives to Malaysian waters, such 
as tiger grouper (Epinephelus fuscoguttatus), Javanese carp 

(Puntius gonionotu) and grass carp (Ctenopharyngodon idella) 
[9–11] are therefore potentially useful as biomarker agents for 
pesticides or insecticides. Mussels [12] have been also 
employed to detect the presence of pollutants by linking it to the 
inhibition of cholinesterase activities.  

Acetylcholinesterase (AChE) enzyme is regarded as a 
biomarker in evaluating the effects of pollutants and 
environmental monitoring [13]. Two classes of cholinesterase, 
i.e. acetylcholinesterase (AChE) and butyrylcholinesterase 
(BChE), can be distinguished functionally, primarily on the 
basis of substrate specificity [3]. AChE hydrolyzed 
acetylcholine much faster than other choline esters and is 
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 ABSTRACT 

In this work we assess the potential of acetylcholinesterase (AChE) from Oreochromis 

mossambicus (Toman) as a sensitive test for the presence of insecticides. The partial purification 
and characterization of a soluble AChE from Oreochromis mossambicus brain tissues using 
affinity chromatography gel (procainamide–Sephacryl S-1000) showed that the partially purified 
AChE was most active on acetylthiocholine (ATC) but had low activities on 
propionylthiocholine (PTC) and butyrylthiocholine (BTC), indicating that the partially purified 
fraction was predominantly AChE. Soluble AChE was partially purified 9.27-fold with a 91.12% 
yield. The partially purified AChE displayed the highest activity on ATC at pH 7 and at 30oC 
using 0.1 M Tris buffer. The enzyme exhibited Michaelis-Menten kinetic constants, Km, for 
ATC, BTC and PTC at 36, 77 and 250 µM, respectively, and the maximum velocities, Vmax, were 
18.75, 0.12 and 0.05 µmol/min/mg protein, respectively. Moreover, the AChE from 
Oreochromis mossambicus presented comparable sensitivity to carbamates and 
organophosphates insecticides than that from Electrophorus electricus and many other fish 
AChE by comparing half maximal inhibitory concentration values. Therefore, the enzyme is a 
valuable source for insecticides detection in Malaysian waters at lower cost.   
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inactive on butyrylcholine. BChE, on the other hand, can 
hydrolyze both butyrylcholine and acetylcholine although at a 
much lower rate [14,15]. The role of acetylcholinesterase is the 
hydrolysis of acetylcholine into choline and acetic acid, 
acetylcholine as a neurotransmitter and therefore responsible for 
the normal neural functioning of sensory, therapeutic, and 
muscular systems. In fish, acetylcholinesterase inhibition 
resulted in difficulty in respiration, feeding and swimming [16]. 
Inhibition of the esterase activities resulted in the accumulation 
of acetylcholine in the synapses and too much stimulation of 
muscarinic and nicotinic receptors [17].  

Additional levels of acetylcholine over stimulate the 
muscarinic and nicotinic receptors in the central and peripheral 
nervous systems and also the neurotransmitter junctions, 
resulting in various signs of poisoning which include body 
temperature fluctuations, changes in the heart rate, blood 
pressure, muscle twitching, and tremors. Sometimes dead may 
occur due to the cessation of respiration as a result of the effects 
of anticholinesterase activity in both the central and peripheral 
nervous systems [17]. Many pollutants cause changes in the 
activity of acetylcholinesterase in fish [18]. Nevertheless, this 
enzyme is easily inhibited by these insecticides, providing a 
convenient and rapid means of monitoring the presence of 
pollutants in the environment.  

A previous in vivo work on a snakehead fish has shown 
that the brain cholinesterase activity from the organism is very 
sensitive to insecticides [19] and hence can be a replacement for 
the expensive Electrophorus electricus, which is commonly 
used as a biosensor for the detection of insecticide [6]. The 
main aim of this work is to assess the sensitivity of AChE from 
Oreochromis niloticus on carbamates and organophosphates 
assay in vitro. The sensitivity of AChE from Oreochromis 

niloticus in comparison of AChE from Electrophorus electricus 
will be then evaluated. This work proves that AChE from 
Oreochromis niloticus has the potential to be a cheaper and 
local source of AChE for detection of insecticides in the tropics. 
 

Materials and Methods 

 

Chemicals 

Carbofuran, methomyl, carbaryl, parathion, malathion, 
diazinon, bendiocarb, chlorpyrifos, acephate, dimethoate and 
trichlorfon were purchased from Dr. Ehrenstorfer (Augsburg, 
Germany). Bromine, acetylthiocholine iodide (ATC), 
propionylthiocholine chloride (PTC), β-mercaptoethanol, 
procainamide hydrochloride, 1,4-butanediol diglycidyl ether 
and sodium borohydride were purchased from Sigma-Aldrich. 
5’-dithio-bis (2-nitrobenzoic acid) (DTNB) and 
butyrylthiocholine iodide (BTC) were purchased from Fluka 
Chemie GmbH.  
 

Commercial AChE preparation from eel (E. electricus, 349 
units/mg solid) was purchased from Sigma (St. Louis, USA). 
Biorad Protein Assay was purchased from Bio-Rad Laboratories 
Inc. Vivaspin4 was from Vivascience. All other chemicals used 
in this study were of the analytical or special grade.  
 

Specimen 

Oreochromis niloticus was used as the fresh water test 
organisms in this study. The fish, weighing 900-1200 g and 
measuring approximately 36 cm in length, were obtained from 
Snoc International Sdn Bhd, Selangor, Malaysia. The fish was 
killed by decapitation, and the whole brain was dissected out 
immediately. Approximately one gram of brain was 

homogenized in 20% (w/v) of 0.1 M sodium phosphate buffer 
pH 8.0 using an Ultra-Turrax T25 homogenizer fitted with a 
Teflon pestle. Phenylmethylsulfonyl fluoride was used to 
inactivate and remove unwanted serine proteases. The brain 
suspension was homogenized, and the crude extract was 
centrifuged at 15,000×g for 10 minutes at 4ºC to remove debris. 
The homogenate was subsequently centrifuged at 100,000×g in 
a Sorval® Ultra Pro 80-TH-641 for an hour at 4ºC to separate 
the cytosol and membrane components. The supernatant `was 
used in the next purification procedures [3,6].  
 
Preparation of Affinity Chromatography Columns 

Epoxy (Bisoxirane) Activation 

Affinity procainamide chromatography was prepared according 
to the modified method of Tham et al. [6]. Briefly, 100 mL of 
Sephacryl S-1000 (settled gel, Sigma, St. Louis, USA) was 
washed with 1 L of deionized water in a sintered glass tunnel, 
dried, and then transferred to a 500-ml beaker. The gel was 
suspended in 75 ml of 0.6 M NaOH containing 150 mg sodium 
borohydride and stirred. Approximately 75 ml of 1,4-butanediol 
diglycidyl ether was slowly added with constant stirring.  
 

The mixture was left stirred at room temperature overnight. 
The activated gel was then thoroughly washed with water to 
remove excess reagent until there was no longer evidence of an 
oily film on the surface of the gel, representing the remaining 
epoxy compound. Acetone was used to aid in the complete 
removal of bisoxirane groups. The gel was resuspended in water 
for ligand coupling. 
 
Ligand Coupling of Procainamide–Sephacryl S-1000 gel 

The epoxy-activated Sephacryl S-1000 was washed with 
deionized water on a sintered glass filter. The gel slurry was 
transferred onto a coupling solution of 12 mM of borate buffer 
(pH 11.0) containing 0.2 M of procainamide. The pH was then 
adjusted to 12 by the addition of 1.0 M NaOH. The mixture was 
incubated at 25°C for 96 hours on a shaking incubator.  
 

The gel was washed in sequence with 10 volumes each of 
0.1 M sodium acetate (pH 4.5), 12 mM sodium borate (pH 10) 
and deionized water. The excess active groups on the gel were 
blocked by suspending the gel in 100 ml of 1.0 M ethanolamine 
(pH 9.0). The mixture was stirred at room temperature for 6 
hours. Finally, the gel was washed thoroughly with 1 L of 1.0 M 
NaCl followed by 5 L of deionized water.  
 
Screening of carbamates and organophosphates as AChE 

inhibitor 

Carbamates and organophosphates were sourced from 
PESTANAL (Sigma-Aldrich International GmbH). OPs were 
activated prior to assaying according to the modified method of 
Villatte et al. [20]. The pesticide (25 µl) was incubated in 5 µl 
of 0.01 M pure bromine solution at room temperature for 20 
minutes. 20 µl of 5% ethanol was added to stop the activation 
process. Preliminary experiments showed that bromine and 
ethanol at the given concentration did not inhibit AChE 
activities [21].  
 

The half maximal inhibitory concentration (IC50) was 
determined using at least five different concentrations of 
carbamate and OPs. The assay mixture contained 150 µl of 
potassium phosphate buffer (0.1 M, pH 8.0), DTNB (20 µl, 
0.067 mM), carbamate (50 µl) and enzymes (10 µl). The 
mixture was incubated in the dark for 10 minutes at room 
temperature. ATC (20 µl, 0.5 mM) was subsequently added. 
The mixture was left to react at room temperature for 10 
minutes before the absorbance was read at 405 nm [6]. 
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RESULTS  

 

The effect of insecticides on AChE activity 

Screening of insecticides showed that all the carbamates and the 
OPs gave strong inhibition with no significant difference among 
them but carbofuran and carbaryl show closer to 100% 
inhibition to AChE activity. IC50s for various insecticides of 
previous studies are shown in Table 1 in comparison with 
another source of AChE. Non-overlap of confidence interval 
usually signifies significant difference at the p<0.05 level while 
overlapped interval does not make necessary means difference 
or no significant differences at the p<0.05 level. An overlapped 
confidence interval provides a general view that more data and 
experimentation are needed to assess non-significance 
(Schenker and Gentleman, 2001).  
 

Based on this premise, the AChE from Oreochromis 

mossambicus showed comparable sensitivity to carbamates and 
organophosphates than that from E. electricus. The AChE from 
Oreochromis mossambicus was more sensitive to the 
carbamates carbaryl, and carbofuran than that from E. 

electricus. The latter was more sensitive to the carbamate 
bendiocarb while methomyl showed similar sensitivity towards 
both sources with an overlapped confidence interval. As for 
organophosphate insecticides, Oreochromis mossambicus was 
more sensitive to parathion and chlorpyrifos than E. electricus 

while the latter was more sensitive to malathion and diazinon 
while parathion from Channa micopeltes showed similar 
sensitivity towards both sources with an overlapped confidence 
interval (Table 1).  

 
 

 
 
 
Fig. 1. Effect of various pesticides (1 mg/L) on partially purified AChE 
from Oreochromis mossambicus. Data is mean± standard error (n=3). 
 
    

    

    

    

    

    

    

    

 

 
Fig. 2. Effect of carbofuran on partially purified AChE from 
Oreochromis mossambicus. Data is mean± standard error (n=3). 

 

 
 
Fig. 3. Effect of carbaryl on partially purified AChE from Oreochromis 

mossambicus. Data is mean± standard error (n=3). 
 

 

 
 

Fig. 4. Effect of methomyl on partially purified AChE from 
Oreochromis mossambicus. Data is mean± standard error (n=3). 
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Fig. 5. Effect of bendiocarb on partially purified AChE from 
Oreochromis mossambicus. Data is mean± standard error (n=3). 
 

 

 

 

 
 

 

Fig. 6. Effect of parathion on partially purified AChE from 
Oreochromis mossambicus. Data is mean± standard error (n=3). 
 
 
 

 
 

Fig. 7. Effect of malathion on partially purified AChE from 
Oreochromis mossambicus. Data is mean± standard error (n=3). 
 

 
 

Fig. 8. Effect of diazinon on partially purified AChE from Oreochromis 

mossambicus. Data is mean± standard error (n=3). 
    

    

    

Fig. 9. Effect of chlorpyrifos on partially purified AChE from 
Oreochromis mossambicus. Data is mean± standard error (n=3). 

 

Table 1. Comparisons of the sensitivity of Oreochromis mossambicus 

AChE to various insecticides in comparison to other fish AchEs. 

 
 IC50 (mg/L) (95% Confidence Interval) 
Fish species Carbof--

uran 
 

Carb-
aryl 

 

Meth-
omyl 

 

Bend-
iocarb 

 

Parathion-
oxon 

 

Malathi
on-oxon 

 

Diazino
n-oxon 

 

Chlorp-
yrifos-
oxon 

Author 

Electrophorus 

electricus 
0.0060 

(0.0063-
0.0065) 

0.1330 
(0.1220-
0.1450) 

0.0260 
(0.0240-
0.0280) 

0.0150 
(0.0150-
0.0160) 

0.0680 
(0.0660-
0.0690) 

0.0140 
(0.0130-
0.0140) 

0.1770 
(0.1690-
0.1860) 

0.0600 
(0.0550-
0.0650) 

[22] 

Periophtal-

modon 

schlosseri 

0.0450 
(0.0399-
0.0517) 

0.1124 
(0.1025- 
0.1245) 

0.0567 
(0.0504- 
0.0648) 

0.0633 
(0.0537-
0.0773) 

Not done Not done Not done Not done [23] 

Lates calcarifer 

 

Not done Not done Not done Not done Not done Not done Not done Not done nil 

Osteochilus 

hasselti  

0.0550 
(0.0515-
0.0670) 

0.0497 
(0.0414-
0.0620) 

0.0845 
(0.0747-
0.0973) 

0.0470 
(0.0409-
0.0553) 

0.0660 
(0.0580-
0.0766) 

0.0681 
(0.0592-
0.0802) 

0.0991 
(0.0906- 
0.1094) 

0.0632 
(0.0570-
0.0709) 

[22] 

Pangasius sp. 0.006 
(0.0058-
0.0065) 

0.061 
(0.043- 
0.105) 

0.016 
(0.015-
0.017) 

0.012 
(0.011-
0.013) 

0.047 
(0.041-
0.055) 

0.011 
(0.008-
0.015) 

0.081 
(0.074-
0.089) 

0.029 
(0.023-
0.039) 

[24] 

Channa 

micropeltes 

(Toman) 

0.0081 
(0.0074-
0.0089) 

0.07922 
(0.0697-
0.0917) 

0.0192 
(0.0178-
0.0208) 

0.0379 
(0.0341-
0.0427) 

0.0316 
(0.0279-
0.0363) 

0.0242 
(0.0192-
0.0327) 

0.0599 
(0.0554-
0.0652) 

0.0522 
(0.0418-
0.0693) 

[25] 

Clarias 

batrachus 

0.006 
(0.006-
0.008) 

0.130 
(0.0012-
0.0014) 

Not done Not done Not done Not done Not done Not done [6] 

Tor tambroides 0.0643 
(0.0482 - 
0.0966) 

0.0555 
(0.0439 - 
0.0754) 

0.0817 
(0.0571- 
0.1438) 

0.0758 
(0.05815- 
0.1090) 

Not done Not done Not done Not done [26] 

Puntius 

schwanenfeldii 

1.411 7.045 8.335 0.838 Not done Not done Not done Not done [27] 

Puntius 

javanicus 

0.035  
(0.030-
0.045) 

0.031 
(0.026 -
0.040) 

0.090 
(0.077 -
0.108) 

0.045 
(0.039 -
0.054) 

0.151 
(0.122 -
0.198) 

0.063 
(0.053 -
0.078) 

0.103 
(0.084 -
0.132) 

0.202 
(0.178 -
0.232) 

[28] 

 

Present study 

0.03605 
(0.03201- 
0.04127) 

0.02482 
(0.02305- 
0.02687) 

0.02482 
(0.02189-
0.03052) 

0.03658 
(0.03194- 
0.04280) 

0.03272 
(0.02894- 
0.03765) 

0.04486 
(0.04145- 
0.04888) 

0.02455 
(0.02238-
0.02720) 

0.04168 
(0.03774- 
0.04654) 

 

Note: All values have a correlation coefficient value of at least 0.95. 
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DISCUSSIONS 

 

Oreochromis mossambicus is highly prized for its medicinal 
properties in healing wounds of internal organs and is widely 
found in Malaysian fresh water aquatic bodies [29]. The results 
from this study will be useful for comparison purposes on other 
local fish species and as a precursor for the development of an 
assay for insecticide pollutants. The purification method that 
uses a custom made procainamide based affinity gel is an 
efficient partial purification technique that has been employed 
elsewhere [6,30,31].  
 

The insecticides screening results showed that the AChE 
from this organism could be further developed into a sensitive 
inhibitive assay for insecticides. The bromine oxidation 
technique in this work was adequate to fully oxidize the 
organophosphates. However, oxonation using bromine is 
limited to OP compounds that require oxidative desulfuration 
for activation. OP compounds that are oxygen analogue in the 
active form are activated by other procedures [20].  

 
Between the CBs, carbofuran is a comprehensive range 

systemic insecticide which is commonly used throughout the 
world. Carbofuran has been detected in ground, surface, and 
rain water due to its widespread use [32].The use of carbofuran 
is limited to oil palm plantation but is broadly applied in a 
paddy field, vegetables and fruits in Malaysia making their 
detection important [33]. Begum et al. [4] reported the toxic 
effect of carbofuran on freshwater teleost (Clarias batrachus), 
the findings explain that, toxicity increases due to the increase 
in carbofuran concentration and time of exposure. When 
exposed in vivo, each of these insecticides is toxic to fish, and 
the mechanism of inhibition is probably through inhibiting the 
functions of cholinesterases [34]. For example, diazinon is toxic 
to Oncorhynchus mykiss (rainbow trout), Poecilia reticulata 
(guppy), Brachydanio rerio (zebra fish) and Cyprinus carpio 
(carp), and guppy exhibited the strongest toxicity due to it 
having the highest rate of bioactivation of diazinon [35–37].  

 
Carbaryl is toxic to fish as it causes changes in both 

physiology as well as the behaviour of the fish and mostly 
sprayed towards the period of crop harvesting. Its exposure 
causes significant inhibition of cholinesterase in the muscle of 
rainbow trout (Oncorhynchus mykiss) [37]. Exposure to 
methomyl pesticide at different concentrations resulted to 
mortalities and the maximum concentration of 10 ppm for 96 
hours causes 100% mortality in Oreochromis niloticus, it is also 
indicated that mortality increases as the methomyl concentration 
is increases as well as the time of exposure [38]. Diazinon and 
chlorpyrifos persist longer in the aquatic environment as 
compared to marathon and carbaryl, the degree of pesticides 
usage and method of application especially in agriculture have 
been of great concern to scientists [39].  

 
Parathion is reported to inhibit acetylcholinesterase activity 

of zebra fish (Danio rerio) after exposure to sub-lethal 
concentrations; there was a correlation between the AChE 
inhibition and the parathion concentration by which higher 
concentrations causes more inhibition [40]. Malathion exposure 
causes biochemical alterations in the liver Labeo rohita; there 
was a reduction in total, soluble and structural protein. Also the 
activity of acetylcholinesterase was hindered [41]. 
 
The organophosphates are not toxic on their own and need 
activation by oxonation. This is accomplished using bromine 
water in vitro and enzymes in vivo. Parathion is converted to O, 
O-diethyl O-(4-nitrophenyl) phosphorothioate in microsome 

[42]. Trichlorfon, acephate and dimethoate were not inhibitory 
to AChE. This is because these pesticides are not from the class 
of phosphorothionates and they cannot be oxonated by bromine 
[43]. 
 

Pollutions such as azo dyes [44–46], detergents [47–53], 
hydrocarbons [54–59], heavy metals [60] and insecticides [61–
65] are serious health threats, and the development of an assay 
for insecticides is hoped to increase the biomonitoring 
efficiency of toxic xenobiotics. Previous studies have shown 
that species of the genus Oreochromis spp. could be used as a 
biomarker for monitoring the presence of insecticide in vivo 
[66–72] and there is a possibility that AChE from this organism 
could be used as a new source of AChE for the detection of 
insecticides in vitro.  
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