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INTRODUCTION 

 

Bacterial growth linked processes frequently display a 
unique phase in which the specific growth rate commences at a 
value of zero after which it accelerates to a maximal value 
(µmax) in a certain time period, producing a lag time (λ). It has 
been argued that the sigmoid shape seen in the lag period is 
because the bacterial cells are gearing their growth mechanism 
to adjust to a new environment in a vegetative state especially 
during storage. This adjustment period is traditionally called the 
lag period. It has been suggested as a transient period that 
connects two autonomous systems. The introduction of the lag 
time or parameter is meant largely convenience rather than 
having a mechanistic interpretation [1]. It is theorized that in the 
initial inocula, each bacterial cells would have different rates of 

growth and if these rates could be measured, would show 
nonlinear distribution as suggested by several workers [1,2]. 

 
Molybdenum has many uses in industries including an 

alloying agent, automobile engine anti-freeze component, a 
portion of corrosion resistant steel and as a lubricant in the form 
of molybdenum disulphide. The wide application of 
molybdenum in the industry has triggered several water 
pollution cases worldwide such as in Tokyo Bay, Tyrol in 
Austria and in the Black Sea, where molybdenum levels 
reached hundreds of ppm [3]. In addition, terrestrially, it has 
been recognized as a significant pollutant in sewage sludge 
pollution that poses a health hazard [3].  

 
Molybdenum is very toxic to ruminants at several parts per 

million levels, with cows being the most affected [4,5]. A 
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 ABSTRACT 

Molybdenum, an emerging pollutant, has being demonstrated recently to be toxic to 
spermatogenesis in several animal model systems. Metal mines especially gold mine often use 
cyanide and hence isolation of metal-reducing and cyanide-degrading bacteria can be useful for 
the bioremediation of these pollutants. Preliminary screening shows that three cyanide-degrading 
bacteria were able to reduce molybdenum to molybdenum blue (Mo-blue) when grown on a 
molybdate low phosphate minimal salts media. Phylogenetic analyses of the 16S rRNA gene of 
the best reducer indicates that it belongs to the Serratia genus. A variety of mathematical models 
such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, von Bertalanffy, Buchanan 
three-phase and Huang were used to model molybdenum reduction, and the best model based on 
statistical analysis was modified Gompertz with lowest values for RMSE and AICc, highest 
adjusted R2 values, with Bias Factor and Accuracy Factor nearest to unity (1.0). The reduction 
constants obtained from the model will be used to carry out secondary modelling to study the 
effect of various parameters such as substrate, pH and temperature to molybdenum reduction. 
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number of Mo-reducing bacteria had been isolated to date, most 
of which were locally isolated [6–14] except a few [15–18]. The 
perceived low toxicity of molybdenum to human and other 
organism compared to other heavy metals such as mercury, 
selenium and chromium has resulted in limited works on 
molybdenum bioreduction as a detoxification process. 
However, more recent data on molybdenum toxicity in 
spermatogenesis inhibition and arresting embryogenesis in 
organisms such as catfish and mice at levels as low as several 
parts per million [19,20] will spur more works on microbial 
molybdenum detoxification in the near future. 

 
Kinetic studies on Mo-blue production have been explored 

previously [8,21], but all these works utilize the linearization of 
the Mo-blue production over time profile to obtain the specific 
growth rate for further secondary modelling. As benefit of 
nonlinear regression analysis for Mo-blue production have been 
described, thus, the objective of this work is to evaluate several 
available models such as Logistic [22,23], Gompertz [23,24], 
Richards [23,25], Schnute [23], Baranyi-Roberts [26], von 
Bertalanffy [27,28], Buchanan three-phase [29] and more 
recently Huang model [30] in modeling Mo-blue production 
from the bacterium Serratia sp. strain HMY1. 
 
MATERIAL AND METHODS 

 
Isolation and maintenance of the Molybdate-reducing 

bacterium 

The bacterium utilized in this work has been tentatively 
identified as Serratia sp. strain HMY1 (Yakasai et al., 
unpublished results). The growth and maintenance were carried 
out on solid agar in low phosphate molybdate media, LPM (pH 
7.0) containing glucose (1%), (NH4)2SO4 (0.3%), MgSO4.7H2O 
(0.05%), NaCl (0.5%), yeast extract (0.05%), Na2MoO4.2H2O 
(0.242%) and Na2HPO4 (0.071% or 5 mM) (Abo-Shakeer et al., 
2013). Glucose was separately autoclaved. The only difference 
between the LPM and high phosphate molybdate medium 
(HPM) was the phosphate concentration, which was fixed at 
100 mM for the HPM.  
 
Preparation of resting cells for molybdenum reduction 

characterization  

Mo-blue production was monitored at various molybdate 
concentrations using resting cells under static conditions in a 
microplate or microtiter format [31]. Cells were grown in High 
Phosphate media, HPM (1 L) for 48 h at room temperature on 
an orbital shaker (150 rpm). The cells were then harvested by 
centrifuging at 15,000 ×g for 10 min at room temperature. The 
pellet was washed twice with deionized water to remove 
residual phosphate. The pellet was re-suspended in LPM (20 
mL) minus the molybdenum component to get an approximate 
absorbance of 1.0 at 600. Resting cells (180 µL) were sterically 
pipetted into the wells of a sterile microplate.  
 

To initiate production of Mo-blue, various sodium 
molybdate concentrations (20 µL) from a stock solution were 
mixed to the resting cells. The plate was incubated at room 
temperature, following sealing with a tape that allows gas 
exchange (Corning® microplate). Measurement of Mo-blue 
production was performed at 750 nm on a BioRad 680 reader 
(Richmond, CA, USA). A specific extinction coefficient of 
11.69 mM.-1.cm-1 at 750 nm was utilized [32].  
 

 

Determination of Kinetic Parameters for Molybdenum Blue 

production 

 

Fitting of the data 
Fitting of the growth data to the nonlinear equations (Table 1) 
was carried out by nonlinear regression utilizing the Marquardt 
algorithm that minimizes sums of the square of residuals 
utilizing CurveExpert Professional software (Version 1.6). In 
this lookup approach, the sum of squares of the differences 
between the predicted and observed values is minimized. The 
software can be automatically or manually programmed to 
calculate initial values of parameters. Estimation of µm was 
carried out by the steepest ascent search of the curve amongst 
four datum points.  
 
Table 1. Mo-blue production models used in this study. 
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Note: 
A= Mo-blue lower asymptote; 
µm= maximum specific Mo-blue production rate; 
v= affects near which asymptote maximum Mo-blue production οχχυρσ. 

λ=lag time 
ymax= Mo-blue upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the 
reduction process. The lag time (h-1) can be calculated as h0=µmax 

 
Estimation of λ was carried out by determining the 

intersection of this line with the x-axis. Finally, estimation for 

Y = A, IF X < LAG 
Y=A + K(X ̶ λ), IF λ ≤ X ≥ XMAX 

Y = YMAX, IF X ≥ XMAX 
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the asymptote (A) was carried out by taking the final datum 
point. As the Huang’s model is a differential equation, it needs 
to be solved numerically. The Runge-Kutta method was utilized 
to solve numerically the differential equation. The ode45 solver 
in MATLAB (Version 7.10.0499, The MathWorks, Inc., Natick, 
MA) was used to solve this equation. 
 
Statistical analysis 
The quality of fit of the models to the experimental data was 
evaluated statistically using the adjusted coefficient of 
determination (R2) (Eqn. 1), Root-Mean-Square Error (RMSE) 
(Eqn. 2), corrected AICc (Akaike Information Criterion) (Eqn. 

3), bias factor (BF) (Eqn. 4) and accuracy factor (AF) (Eqn. 5). 
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Where n represents the number of data points in the curve and p 
represents the number of parameters used in the model. The 
model having the smallest AICc value is more likely correct 
[33]. 
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RESULTS AND DISCUSSION 

 
The Mo-blue production from this bacterium was sigmoidal in 
shape with a lag phase of about 15 hours and reaching 
maximum Mo-blue production at approximately 50 hours of 
static incubation (Fig. 1). The Mo-blue production over time 
profile was fitted to eight different models. The resultant fitting 
shows visually acceptable fitting (Fig. 2). The best performance 
was modified Gompertz model with the lowest value for 
RMSE, AICc and the highest value for adjusted R2. The AF and 
BF values were also excellent for the model with their values 
closest to 1.0. Accuracy Factor (AF) and Bias Factor (BF) were 
suggested by Ross [34].  
 

A Bias Factor that is equal to 1 signifies an ideal match 
between observed and predicted values. For microbial growth 
curves or Mo-blue production studies, a bias factor having 
values < 1 signifies a fail-dangerous model while a bias factor 
having value > 1 signifies a model that is fail-safe. For the 
Accuracy Factor, values are normally ≥ 1, and higher AF values 
indicates a model which is less precise. The poorest 
performance was von Bertalanffy with the lowest score for most 
of the statistics tests (Table 2). The coefficients for the 
modified Gompertz model at various molybdenum 
concentrations are shown in Table 3. 

 

 

 
 
Fig. 1. The Mo-blue production curves of Serratia sp. strain HMY1 at 
various concentrations of sodium molybdate over time. The error bars 
represent the mean ± standard deviation of three replicates. 

 
 
 

0.0

0.7

1.4

2.1

0 10 20 30 40 50 60

Incubation (h)

ln
 n

m
o

le
 M

o
-b

lu
e

Experimental

Huang

Baranyi-Roberts

Buchanan

Logistic

Richards

Von Bertalanffy

Gompertz

Schnute

 
 

Fig. 2. The Mo-blue production curve of Serratia sp. strain HMY1 at 30 
mM of sodium molybdate fitted to various models. 
 
 
Table 2: Statistical analysis of the various fitted models. 

 
Model RMSE R2 adR2 AF BF AICc 

Huang 0.0431 0.9975 0.9963 1.05 0.99 -67.28 
Baranyi-Roberts 0.0321 0.9986 0.9980 1.07 0.99 -75.52 
Modified Gompertz 0.0256 0.9990 0.9987 1.04 1.00 -87.57 
Buchanan-3-phase 0.0508 0.9961 0.9949 1.04 1.00 -68.35 
modified Richards 0.0720 0.9927 0.9894 1.13 0.90 -52.90 
modified Schnute 0.0523 0.9960 0.9942 1.09 0.98 -61.85 
modified Logistics 0.0586 0.9944 0.9927 1.09 1.00 -64.35 
von Bertalanffy 0.0814 0.9899 0.9869 1.35 0.76 -55.17 

Note: 
p  no of parameters 
adR2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 
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Fig. 3. The Mo-blue production curves of Serratia sp. strain HMY1 at 
various concentrations of sodium molybdate fitted using modified 
Gompertz model. 
 
Table 3. Mo-blue production coefficients at various molybdenum 
concentrations as modelled using the modified Gompertz model. 

 
Conc. 
(mM) 5 10 15 20 25 30 35 40 50 60 70 

Y0 0.137 0.104 0.127 0.151 0.119 0.129 0.146 0.156 0.134 0.087 0.142 
Lag 7.401 6.261 7.335 7.426 7.965 7.448 8.58 11.68 10.37 2.118 18.76 
Ymax 1.289 1.946 2.085 2.024 1.75 1.503 1.138 0.855 0.752 0.476 0.278 

µumax 0.048 0.074 0.082 0.076 0.066 0.052 0.041 0.035 0.028 0.019 0.014 

 
The modified Gompertz model named in 1844-1845 by 

Pierre François Verhulst, is a classical growth models that 
encompasses model such as the Verhulst [24,35]. The first 
phase of growth is roughly rapid; after that, as saturation 
commences, the growth decreases, and at maturation, growth 
ceases. The first person to utilize the Gompertz formula to suit 
microbial growth curves was Gibson et al. [36], and the 
equation was used successfully to explain the exponential and 
stationary stages of the microbial growth curves that is 
sigmoidal. However, the model was not adequate to describe the 
lag phase. The model was modified by Gibson et al. [44] to 
incorporate the lag phase and have been successfully used in 
modelling many microbial growth curves to the point where its 
dominance in mathematical modelling bacterial growth and 
product formation curves have been acknowledged [21,26].  

 

The model has its drawbacks and is not perfect with 
several main issues. Firstly, in the static version, N(t=0) is not 
equal to No. Secondly, an inflexion point is the intrinsic 
property of the sigmoidal curve causing the model to have a 
systematic problem in describing the exponential phase [24]. 
Finally, the model tends to over-estimates its parameter values 
[37–39]. 

 

The asymmetrical sigmoidal shape of the modified 
Gompertz represents and may offer greater flexibility than the 
logistic. Sigmoidal models such as the logistic and Gompertz 
differ chiefly at the point of inflexion between the lower and the 
upper asymptotes with the logistics and Gompertz models 
having the distance of 1/2 and 1/e between the lower and the 
upper asymptotes, respectively [28]. In essence, other growth 
models provide flexible slope function and variable point of 
inflexion between the lower and upper asymptotes. These 
functions are either special or simpler cases of a parent growth 
model. For instance, the Richard model incorporates the 
logistics, Gompertz or von Bertalanffy growth models 
[23,28,36]. 

 

Parameters obtained from the fitting exercise would later 
be used for secondary modelling of Mo-blue production using a 
model such as the two-parameter Monod model or other more 
complex “secondary models” such as Haldane, Aiba, Yano and 
others.  

 
CONCLUSION 

 
In conclusion, the modified Gompertz model was the best 
model in modelling the Mo-blue production curve of Serratia 

sp. strain HMY1 based on statistical tests such as root-mean-
square error (RMSE), adjusted coefficient of determination (R2), 
bias factor (BF), accuracy factor (AF) and corrected AICc 
(Akaike Information Criterion). The use of bacterial growth 
models to obtained accurate Mo-blue production rate is useful 
for further secondary model development in molybdenum 
reduction to Mo-blue specifically and in heavy metals 
detoxification process in general as judged from the literature 
search, and this work has demonstrated the applicability of such 
models. Current works include secondary modelling of the Mo-
blue production from this bacterium especially on the inhibitory 
effect of the substrate molybdenum on the maximum Mo-blue 
production rate values obtained from this works. In addition, 
other secondary modelling works including the effect of 
environmental conditions (pH and temperature) on Mo-blue 
production rates are being carried out. 
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