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INTRODUCTION 

 
Petroleum hydrocarbon contamination represents a major 
concern around the globe. The incessant application of this 
noxious compounds in transportation and power generation 
remains as the principal source of pollution [1]. The basis of 
hydrocarbon compounds is from two major elements of 
hydrogen and carbon. Due to their repetitive and redundancy in 
their structure, the individual atoms have a high probability to 
be linked together in any number of fashions resulting in the 
formation of several hydrocarbon structures such as chains, 
circles, and other complex shapes. These hydrocarbon 
complexes formed from a varied structure made up a large part 
of the petroleum composition [2]. As the structure of different 
hydrocarbons may differ from one another, they can be 
categorised into several basic class such as alkanes (saturated 
hydrocarbons), alkenes (unsaturated hydrocarbons), 
cycloalkanes and aromatics [3,4]. 

 
The toxic effects of petroleum hydrocarbon substances are 

highly dependent on the structure of the hydrocarbon itself. 
Generally, the greater the length of the carbon chain and the 
number of aromatic rings, the higher the toxicity of the 
petroleum oil [5]. Most of the hydrocarbon compounds are 

toxic, mutagenic and carcinogenic. According to the United 
States Environmental Protection Agency (EPA)[6], these 
toxicants are classified as the priority environmental pollutants. 
Among the classes of hydrocarbon components, polycyclic 
aromatic hydrocarbons (PAHs) are widely considered to be the 
most toxic because of their recalcitrance in the environment 
[7,8]. 

 
Microbial flora and fauna are largely considered as one of 

the best pollutants remediator agents as they are naturally 
available in the environment and have the great versatility to 
strive in restricting settings [9,10]. Amongst the diverse 
microorganisms, bacterial species appeared to be the most 
common scavengers of hydrocarbon pollutants [11–13]. The 
mechanistic approach of the biodegradation by bacterial 
population is through the uptake of those noxious waste as the 
bacterial source of carbon and energy source. The compounds 
were later assimilated and sequentially degraded through a 
succession of enzymatic mineralisation occurred within the cell. 
The ultimate product of the degradation is assumed to be carbon 
dioxide and water [14–16]. For the foundation of hydrocarbon 
remediation by bacteria to start, the isolation and 
characterisation of hydrocarbon-degrading strain are the 
common approaches as to assess the isolates efficacy in the 
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 ABSTRACT 

Petroleum hydrocarbons remain as the major contaminants that could be found across the world. 
Remediation approach through the utilisation of microbes as the bioremediation means widely 
recognised due to their outstanding values. As a result, scientific reports on the isolation and 
identification of new hydrocarbon-degrading strains were on the rise. Colourimetric-based assays 
are one of the fastest methods to identify the capability of hydrocarbon-degrading strains in both 
qualitative and quantitative assessment. In this study, the hydrocarbon-degrading potential of 
nine bacterial isolates was observed via 2,6-dichlorophenolindophenol (DCPIP) test. Two potent 
diesel-utilising isolates show a distinctive tendency to utilise aromatic (ADL15) and aliphatic 
(ADL36) hydrocarbons. Both isolates prove to be a good candidate for bioremediation of wide 
range of petroleum hydrocarbon components. 
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utilisation of specific hydrocarbon before the application in 
contaminated sites.  

 
Numbers of procedure have been used for the 

identification of hydrocarbon-degrading strains. These comprise 
the isolation of hydrocarbon-adapted bacteria from the liquid, 
and solid media supplemented with a range of different 
hydrocarbon substrates, turbidity measurements, oxygen 
consumption and carbon dioxide production. Nevertheless, 
these methods are time-consuming, painstaking, cost-inefficient 
and not reliable [17]. Colourimetric method is one of the 
favoured methods in the identification of hydrocarbon-
degrading strains. The advantages of this practice are cost-
effective, rapid detection, and microbially based approach in 
which natural co-substrate such as oxygen is substituted by a 
synthetic mediator [18]. One of the colourimetric indicators is 
2,6-dichlorophenolindophenol (DCPIP). The principle of this 
redox indicator lies in the oxidation of the carbon source 
(hydrocarbon substrates) in which electrons are transferred to 
the electron acceptors [19]. According to Hanson et al. [20], the 
utilisation of substrate can be observed based on the loss of 
indicator’s blue colour. Numbers of the study also reported 
using this method as the preliminary method for isolation of 
hydrocarbon-degrading strains [19,21,22]. 

 
In this work, the competency of nine isolated bacteria from 

the pristine soil of Southern Victoria Island, Antarctica in 
utilisation of diesel as sole carbon source was observed. The 
isolates that able to utilise diesel oil were assessed in utilising 
different hydrocarbon substrates (n-alkanes, aromatics, and 
PAHs). All isolates were adapted previously in diesel 
supplemented medium. The results obtained in this study will 
be used to further characterise the capability of the potential 
isolate for hydrocarbon bioremediation. 
 

MATERIALS AND METHODS 

 

Chemicals and media 

Diesel oil was purchased from PETRONAS gas station located 
in Serdang, Selangor. n-hexane, n-heptane, n-tetradecane, n-
hexadecane, xylene, and toluene were obtained from Sigma 
Aldrich, Germany. Phenol was bought from Nacalai Tesque, 
Inc. Japan. Bushnell-Haas (BH) media was used as the standard 
media for the experiment. The BH media contents were as 
follows:  0.2 g/L MgSO4, 0.02 g/L CaCl2, 1.0 g/L KH2PO4, 1.0 
g/L K2HPO4, 1.0 g/L NH4NO3, 0.05 g/L FeCl3. The solution 
was stirred evenly, with the pH adjusted to pH 7.0 ± 0.2 at 25°C 
[23]. 
 

Preparation of bacterial inoculum/cell suspension 

For cell suspension preparation, isolates were initially grown in 
100 ml (250 ml flask) of standard nutrient broth for 48 hours 
before cultivation. The isolates were incubated in a rotary 
shaker with a temperature of 20°C with an agitation speed of 
150 rpm. The grown culture was then centrifuged at 5000×g for 
30 min. The pelleted cells were then washed with 1X 
phosphate-buffered saline (PBS) solution, and the cell density 
was adjusted to OD600 nm = 1.0 [20]. 
 

Screening test for hydrocarbon-utilising bacteria 

The screening experiment was based on the screening 
experiment done by Hanson et al. [20] with several 
modifications. The isolates were initially assessed based on the 
capability to utilise 0.1% (v/v) diesel within 24 h. Isolates that 
showed positive results were subsequently tested in 0.5% (v/v) 
of diesel for the same period (24 h). The utilisation of the potent 
diesel-degrading isolates on different hydrocarbons (n-hexane, 

n-heptane, n-tetradecane, n-hexadecane, xylene, toluene, and 
phenol) as sole carbon source was verified using three µl of cell 
suspension, 2 µl of hydrocarbon substrate, 150 µl of BH media 
and 45 µl of 1.0 g/L DCPIP. Utilisation of selective substrate 
was detected from the changes of DCPIP blue colour (oxidised) 
to colourless (reduced). Plates were incubated at 25°C for 24, 
48 and 72 h. Two set of controls were also prepared to assess 
the interactions of the assay components and the redox 
indicator. Control 1 (C1) consisted of only DCPIP, BH medium, 
and substrate (different control for each different substrate). 
Control 2 (C2) contained DCPIP, BH medium, and cell 
suspension. The function of the latter control was to determine 
the influence of inoculum to DCPIP over time. The 
discolouration of DCPIP was observed qualitatively after 24, 48 
and 72 h. All DCPIP assay were done in 96-well microtitre 
plates (Corning®). 
 
RESULTS 

 

Screening test for hydrocarbon-utilising bacteria 

Table 1 shows the utilisation of 0.1% (v/v) and 0.5% (v/v) 
diesel oil by nine isolates within 24 h. From the results, isolate 
ADL15, ADL36, ADL37, and ADL41 showed fast utilisation of 
0.1% (v/v) within 24 h. When diesel concentration was 
increased to 0.5% (v/v), only two potent isolates was adept to 
utilise the elevated substrate within 24 h. 
 

Table 1. The qualitative observation of primary and secondary 
screening using DCPIP indicator after 24 h 

 

Isolate 
Decolourisation 

0.1% (v/v) diesel 0.5% (v/v) diesel 

ADL11 no no 
ADL13 no no 
ADL14 no no 
ADL15 yes yes 
ADL16 no no 
ADL32 no no 
ADL36 yes yes 
ADL37 yes no 
ADL41 yes no 

 
 

The secondary screening of both isolate (ADL15 and 
ADL36) in several n-alkanes, simple aromatics, and PAHs 
reveals distinctive utilisation of major hydrocarbon substrates 
between the isolates. Diesel oil was also tested with an elevated 
concentration (1.0% (v/v)) to observe the best diesel degraders 
from the two isolates. Table 2 shows the utilisation of different 
hydrocarbon compounds by isolate ADL15 and ADL36 within 
24 h.  

 
Table 2. Biodegradability experiment of hydrocarbon substrates using 
DCPIP indicator at 24, 48 and 72 h.  
 

Hydrocarbon 
substrates 
1.0% (v/v)  

Isolate 

 ADL15 ADL36 
 24 48 72 24 48 72 

n-hexane no no no no no no 
n-heptane no no no no no no 

n-tetradecane no no no yes - - 
n-hexadecane no no no yes - - 

diesel yes - - yes - - 
xylene yes - - no no no 
toluene yes - - no no no 
phenol yes - - no no yes 
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The results show that ADL15 has higher tendency to utilise 
aromatic hydrocarbons while ADL36 has greater affinity for 
aliphatic hydrocarbons. Although ADL36 proved to be a better 
consumer of aliphatics, the isolate cannot utilise short-chain n-
alkanes even after 72 h. However, isolate ADL36 showed a 
promising potential to utilise diesel at a higher concentration as 
the decolourisation of DCPIP occurred less than 24 h (data not 
shown). 
 
DISCUSSIONS 

 

Colourimetric assays such as DCPIP redox assay are valuable 
due to their fast detection of microbial metabolism occurrence 
in both aerobic and anaerobic studies, low resource output and 
cheap. DCPIP is an enzyme-catalysed redox electron acceptor 
that is blue colour in oxidised state and colourless in its reduced 
form. According to Yoshida et al. [24], loss of DCPIP colour is 
observed at its peak wavelength (600 nm). Some studies 
reviewed by Konidari et al. [25] have reported that DCPIP is 
likely unstable in the dark or when long exposure towards the 
light source. Besides, the colour of the DCPIP indicator is more 
practically stable in the presence of light and can be used 
consistently from time to time [26]. 
 

The regulation of metabolic pathways regulated within 
microbial cells is particularly sensitive to the cell’s need. 
Common redox reactions and specific redox couples occur 
consistently in all of the major metabolic pathways in cells. The 
concentrations of the redox couples assist in the flow regulation 
of metabolites through these pathways. According to Buchanan 
[27], these intracellular concentrations of redox couples might 
also be responsive to receptor agonists, as well as cell nutrients. 
Conferring to this important fact, using chemical analysis, such 
alterations in the concentration can be estimated. Hydrocarbon 
oxidation processes by microbes involve redox reactions, in 
which electrons are transferred to electron acceptors, such as 
O2, nitrates, and sulfate [28]. Therefore, it is possible to 
determine the ability of a microorganism to utilise a 
hydrocarbon substrate with the incorporation of DCPIP as the 
terminal electron acceptor into the experiment by simply 
monitoring the colour change from blue (oxidised) to colourless 
(reduced).  
 

The principle of the discoloration can be described by the 
molecular conformation of the DCPIP indicator. As bacterial 
cells utilise the hydrocarbon substrates, electrons are liberated 
to the environment. Molecular conformation of the indicator 
will then takes place and reflects the light in a different angle, 
turning its colouration from blue to colorless [29]. 
 
During experimenting, the intensity of the DCPIP concentration 
must be considered. 1.0 g/L is selected as the concentration in 
regards to previous studies [22,29,30]. A high concentration 
may produce a dark blue colour thus any reduction may not 
easily detect and observed [31]. In contrast, a lower DCPIP 
concentration may produce an insufficient indication for any 
noticeable decreases. A near neutral pH (7.25) was chosen as 
the reasonable pH for DCPIP since the indicator is not 
adequately stable in higher pH values. In regards to the effect of 
temperature, the study was done at 25°C as the established 
maximum response for DCPIP ranges from 297 to 303 K 
(~24°C to 30°C) [32]. 
 
The affinity of isolate ADL15 to utilise aromatic substrate and 
PAHs reveals a promising potential for bioremediation of the 
highly toxic and recalcitrant compounds. Several bacterial 
genera that commonly associated with degradation of aromatic 

hydrocarbons and PAHs are Pseudomonas [33–37], 
Mycobacterium [38–41] and Sphingomonas [42–45]. On the 
other hand, the ability of isolate ADL36 to degrade middle-
chain aliphatic hydrocarbons shows a similarity towards the 
genus Rhodococcus [46–50]. In brief, although both isolates 
showed a different range of catabolic metabolism, both isolates 
exhibited a degradation potential for diesel oil. The ability of 
isolate ADL36 to utilise diesel oil rapidly might occur due to 
the composition of the diesel oil itself, which tends to have a 
higher percentage of aliphatic components [51,52]. 
 
CONCLUSION 

 

Microbes are excellent petroleum hydrocarbon degraders that 
widely available in many environmental niches. Therefore, the 
isolation and identification of these minute organisms are 
fundamental in proposing for a bioremediation tool. 
Colourimetric assessment proved to be the quickest method for 
the detection of microbial metabolism from carbon sources such 
as hydrocarbons. Although the detection of microbial ability to 
degrade hydrocarbon can be observed by this remarkable 
colourimetric approach, a full characterisation and identification 
based on the physiological, biochemical and genetic 
adaptability must be considered to completely comprehend the 
significance of the isolated bacteria in the big picture of 
microbial remediation. 
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