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INTRODUCTION 

 
Bacterial growth linked processes frequently display a unique 
phase in which the specific growth rate commences at a value of 
zero after which it accelerates to a maximal value (µmax) in a 

certain time period, producing a lag time (λ). It has been argued 
that the lag period seen in the sigmoid shape is because the 
bacterial cells are gearing their growth mechanism to adjust to a 
new environment having been in a vegetative state especially 
during storage. This adjustment period is traditionally called the 
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 ABSTRACT 

The pollution of heavy metals and toxic xenobiotics has become a central issue worldwide. 
Bioremediation of these toxicants are being constantly carried out using novel microbes. 
Molybdenum reduction to molybdenum blue is a detoxification process and mathematical 
modelling of the reduction process can reveal important parameters such as specific reduction 
rate, theoretical maximum reduction and whether reduction at high molybdenum concentration 
affected the lag period of reduction. The used of linearization method through the use of natural 
logarithm transformation, although popular, is inaccurate and can only give an approximate 
value for the sole parameter measured; the specific growth rate. In this work, a variety of 
models for such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, Von Bertalanffy, 
Buchanan three-phase and more recently Huang were utilized for the first time to obtain values 
for the above parameters or constants. The modified Gompertz model was the best model in 

modelling the Mo-blue production curve from Serratia marcescens strain DR.Y10 based on 
statistical tests such as root-mean-square error (RMSE), adjusted coefficient of determination 
(R2), bias factor (BF), accuracy factor (AF) and corrected AICc (Akaike Information Criterion). 
Parameters obtained from the fitting exercise were maximum Mo-blue production rate (µm), lag 
time (λ) and maximal Mo-blue production (Ymax) of X (h-1), Y (h) and Z (nmole Mo-blue), 
respectively. The application of primary population growth models in modelling the Mo-

blue production rate from this bacterium has become a successful undertaking. The model 

may also be used in other heavy metals detoxification processes. The parameters 

constants extracted from this work will be a substantial help for the future development 

of further secondary models. 
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lag period. It has been suggested as a transient period that 
connects two autonomous systems. The introduction of the lag 
time or parameter is meant largely convenience rather than 
having a mechanistic interpretation [1]. It is theorized that in the 
initial innocula, each bacterial cells would have different rates 
of growth and if these rates, if they could be measured, would 
show nonlinear distribution as suggested by several workers 
[1,2]. 
 

Molybdenum has many uses in industries including 
alloying agent, automobile engine anti-freeze component, 
portion of corrosion resistant steel and as lubricant in the form 
of molybdenum disulphide. The wide application of 
molybdenum in industry has triggered several water pollution 
cases worldwide such as in the Tokyo Bay, Tyrol in Austria and 
in the Black Sea, where molybdenum level reaches in the 
hundreds of ppm [3]. In addition, terrestrially, it has been 
recognized as a significant pollutant in sewage sludge pollution 
that poses a health hazard [3].  

 
Molybdenum is very toxic to ruminants at levels of several 

parts per million, with cows being the most affected [4,5]. As to 
date quite a number of Mo-reducing bacterium has been 
isolated, and most of these bacterium were isolated locally [6–
13,13,14] with the exception of a few [15–18]. The perceived 
low toxicity of molybdenum to human and other organism 
compared to other heavy metals such as mercury, selenium and 
chromium has resulted in not many works on molybdenum 
reduction as a detoxification process. However, more recent 
data on molybdenum toxicity in inhibiting spermatogenesis and 
arresting embryogenesis in organisms such as catfish and mice 
at levels as low as several parts per million [19,20] will spur 
more works on microbial molybdenum detoxification in the 
near future. 
 

Kinetic studies on Mo-blue production have been explored 
previously [8,21] but all of these works utilize the linearization 
of the Mo-blue production over time profile to obtain the 
specific growth rate for further secondary modelling. As the 
benefits of nonlinear regression analysis of the Mo-blue 
production have been described above, thus, the objective of 
this work is to evaluate several available models such as 
Logistic [22,23], Gompertz [23,24], Richards [23,25], Schnute 
[23], Baranyi-Roberts [26], Von Bertalanffy [27,28], Buchanan 
three-phase [29] and more recently Huang model [30] in 
modeling Mo-blue production from the bacterium Serratia 

marcescens strain DR.Y10. 
 
MATERIALS AND METHODS 

 
Isolation and maintenance of the Molybdate-reducing 

bacterium 

The bacterium utilized in this work has been previously 
developed as an assay for the heavy metal lead [31]. The growth 
and maintenance was carried out on solid agar in low phosphate 
media (pH 7.0) containing glucose (1%), (NH4)2SO4 (0.3%), 
MgSO4.7H2O (0.05%), NaCl (0.5%), yeast extract (0.0.5%), 
Na2MoO4.2H2O (0.242%) and Na2HPO4 (0.071% or 5 mM) 
(Abo-Shakeer et al., 2013). Glucose was separately autoclaved.  
 
Preparation of resting cells for molybdenum reduction 

characterization  

Monitoring of Mo-blue production at various sodium molybdate 
concentration was carried out statically using resting cells in a 
microplate or microtiter format as previously developed [32]. 
Cells from a 1 L overnight culture grown in High Phosphate 
media (HPM) at room temperature on orbital shaker (150 rpm) 

with the only difference between the LPM and HPM was the 
phosphate concentration which was fixed at 100 mM for the 
HPM. Cells harvesting was carried out by centrifugation at 
15,000 x g for 10 minutes. The pellet was washed several times 
to remove residual phosphate and resuspended in 20 mls of low 
phosphate media (LPM) minus molybdenum to an absorbance 
at 600 nm of approximately 1.00. Higher concentrations were 
found to be strongly inhibitory to molybdate reduction [6–
8,10,33–37]. Then 180 µL was sterically pipetted into each well 
of a sterile microplate. Various sodium molybdate 
concentrations in a volume of 20 µL from a stock solution was 
then added to each well to initiate Mo-blue production. A sterile 
sealing tape that allows gas exchange (Corning® microplate) 
was used for sealing the tape. The microplate was incubated at 
room temperature. At defined times absorbance at 750 nm was 
read in a BioRad (Richmond, CA) Microtiter Plate reader 
(Model No. 680). The production of Mo-blue from the media in 
a microplate format was measured using the specific extinction 
coefficient of 11.69 mM.-1.cm-1 at 750 nm as the maximum 
filter wavelength available for the  microplate unit was 750 nm 
[38].  
 
Determination of Kinetic Parameters for Molybdenum Blue 

production 

 
Fitting of the data 
Fitting of the growth data to the nonlinear equations (Table 1) 
were carried out by nonlinear regression utilizing the Marquardt 
algorithm that minimizes sums of square of residuals utilizing 
CurveExpert Professional software (Version 1.6). In this lookup 
approach, the sum of the squares of the differences between the 
predicted and observed values is minimized. The software can 
be automatically or manually programmed to calculate initial 
values of parameters. Estimation of µm was carried out by the 
steepest ascent search of the curve amongst four datum points.  
Estimation of λ was carried out by determining the intersection 
of this line with the x axis. Finally, estimation for the asymptote 
(A) was carried out by taking the final datum point. As the 
Huang’s model is a differential equation, it needs to be solved 
numerically. The Runge-Kutta method was utilized to solve 
numerically the differential equation. The ode45 solver in 
MATLAB (Version 7.10.0499, The MathWorks, Inc., Natick, 
MA) was used to solve this equation. 
 
Statistical analysis 
To make a decision whether there's a statistically significant 
difference between models with different number of parameters, 
with regards to the quality of fit to the same experimental data 
was statistically evaluated through numerous methods including 
the corrected AICc (Akaike Information Criterion), Root-Mean-
Square Error (RMSE), bias factor (BF), accuracy factor (AF), 
and adjusted coefficient of determination (R2). 
 

The RMSE was calculated according to Eq. (1), where Obi 

is the experimental data, Pdi are the values predicted by the 
model, n is the number of experimental data and p is the number 
of parameters of the assessed model. It is anticipated that the 
model with the smaller number of parameters will give a 
smaller RMSE values [39].  
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The coefficient of determination or R2 is used to assess the 

quality of fit of a model in linear regression. However, in 
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nonlinear regression where difference in the number of 
parameters between one models to another do vary, the 
adoption of the R2 method does not readily provides comparable 
analysis. In order to solve this issue, the adjusted R2 is used to 
calculate the quality of nonlinear models using equations 2 and 
3 according to the formula where 2

ys is the total variance of the 

y-variable and RMS is Residual Mean Square. 
 

( )
2

2 1
Ys

RMS
RAdjusted −=

   (2) 
 

( ) ( )( )
( )1

11
1

2
2

−−

−−
−=

pn

nR
RAdjusted

   (3) 
 

The Akaike Information Criterion (AIC) supplies a 
solution to model selection by way of computing the relative 
quality of a given statistical model for just about any given set 
of experimental data [40]. AIC handles the trade-off in regards 
to the goodness of fit of the model as well as the complexness 
of the model. It is in reality founded on information theory. The 
method offers a comparative approximation of the information 
lost for each and every time a given model is used to represent 
the process that produces the information or data. For an output 
of a set of predicted model, the most accepted model will be the 
model displaying the minimum value for AIC. This value is 
generally a negative value, with by way of example; an AICc 
value of -10 is more recommended than the one with -1. The 
equation includes number of parameters penalty, the more the 
number of parameters, the less desired the output or the higher 
the AIC value. Hence, AIC not simply rewards goodness of fit, 
but additionally does not encourage utilizing more complex 
model (overfitting) for fitting experimental data. For data 
having a smaller number of values or a high number of 
parameter used, a corrected version of AIC, the Akaike 
information criterion (AIC) with correction or AICc is utilized 
instead [41]. The AICc is calculated for each data set for each 
model according to the following equation (Eqn. 4); 
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Where n represent the number of data points in the curve 
and p represents the number of parameters used in the model. 
The procedure considers the alteration in goodness-of-fit and 
the difference in number of parameters between two models. 
For each data set, the model having the smallest AICc value is 
more likely correct [41]. 
 

Accuracy Factor (AF) and Bias Factor (BF) to test for the 
goodness-of-fit of the models was calculated according to Eqns. 
5 and 6 as suggested and first proposed by Ross [42]. A Bias 
Factor that is equal to 1 signifies an ideal match between 
observed and predicted values. For microbial growth curves or 
Mo-blue production studies, a bias factor having values < 1 
signifies a fail-dangerous model whilst a bias factor having 
values > 1 signifies a model that is fail-safe. The value of the 
Accuracy Factor is usually ≥ 1, with higher AF values signifies 
prediction that is less precise or accurate. 
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Table 1. Mo-blue production models used in this study. 
 
No Model No of 

parameters 
Equation 
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Buchanan  
Three-phase 
linear model 
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Note: 
A= Mo-blue lower asymptote; 
µm= maximum specific Mo-blue production rate; 
v= affects near which asymptote maximum Mo-blue production occurs. 
λ=lag time 
ymax= Mo-blue upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological 
state of the reduction process. The lag time (h-1) can be calculated as 
h0=µmax 
 
 

RESULTS AND DISCUSSION 

 
The Mo-blue production from this bacterium was sigmoidal 

in shape with a lag phase of about 15 hours and reaching 
maximum Mo-blue production at approximately 50 hours of 
static incubation (Fig. 1). The Mo-blue production over time 
profile was fitted to eight different models. The resultant fitting 
shows visually acceptable fitting (Fig. 2). The best performance 
was modified Gompertz model with the lowest value for 
RMSE, AICc and the highest value for adjusted R2. The AF and 
BF values were also excellent for the model with their values 
were the closest to 1.0. The poorest performance was Von 
Bertalanffy with the lowest score for most of the statistics tests 

Y = A, IF X < LAG 
Y=A + K(X  ̶λ), IF λ ≤ X ≥ XMAX 

Y = YMAX, IF X ≥ XMAX 
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(Table 2). The coefficients for the modified Gompertz model at 
various molybdenum concentrations are shown in Table 3. 

 
Fig. 1. The Mo-blue production curves of Serratia marcescens strain 
DR.Y10 at various concentrations of sodium molybdate over time. The 
error bars represent mean ± standard deviation of three replicates. 
 

 
Fig. 2. The Mo-blue production curve of Serratia marcescens strain 
DR.Y10 at 30 mM of sodium molybdate fitted to various models. The 
models utilized were Huang (HG), Baranyi-Roberts (BR), Buchanan-
three phase (B3P), modified Logistics (ML), modified Richards (MR), 
von Bertalanffy (VB), modified Gompertz (MG) and modified Schnute 
(MS). 
 
Table 2 Statistical analysis of the various fitted models. 
 

Model Parameter RMSE R2 adR2 AICc BF AF 
Huang 4 0.048 0.999 0.999 -64.15 1.11 1.24 
Baranyi-Roberts 4 0.128 0.994 0.991 -36.66 1.20 1.27 
Buchanan-3-phase 3 0.020 0.994 0.993 -94.76 1.01 1.09 
modified Logistics 3 0.089 0.997 0.996 -52.55 0.99 1.20 
modified Richards 4 0.022 0.992 0.990 -86.42 0.82 1.24 
von Bertalanffy 3 0.101 0.996 0.994 -49.04 0.58 1.88 
modified Gompertz 3 0.022 0.997 0.999 -99.79 1.01 1.01 
modified Schnute 4 0.089 0.997 0.995 -47.00 1.24 1.26 

 
Note: 
p  no of parameters 
adR2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 

 

 
Fig. 3. The Mo-blue production curves of Serratia marcescens strain 
DR.Y10 on various concentrations of sodium molybdate fitted using the 
Gompertz model. 
 
Table 3. Mo-blue production coefficients at various molybdenum 
concentrations as modelled using the modified Gompertz model. 
 

  Molybdenum concentration  

 
5 

mM 
10 

mM 
15 

mM 
20 

mM 
25 

mM 
30 

mM 
35 

mM 
40 

mM 
50 

mM 
60 

mM 
70 

mM 
Asymptote (ln nmole Mo-
blue) 0.45 1.29 1.80 2.59 3.54 3.69 3.14 1.71 1.47 0.86 0.50 

µm (h-1) 0.02 0.06 0.10 0.12 0.14 0.15 0.14 0.13 0.08 0.06 0.04 

lag (h) 6.92 11.37 12.36 12.13 12.07 12.45 12.89 13.86 13.56 13.44 15.07 

           

The modified Gompertz model is one of the classical 
growth models that include model such as the Verhulst [23,24]. 
The Gompertz function, named in 1844-1845 by Pierre François 
Verhulstis, is based on an exponential relationship between 
specific growth rate and population density (Eqn x). The initial 
stage of growth is approximately exponential; then, as 
saturation begins, the growth slows, and at maturity, growth 
stops. Gibson et al. [43] were the first to use the Gompertz 

equation to fit microbial growth curves and the equation 

was successfully used to describe the exponential and 

stationary phases of the microbial growth curves that is 

sigmoidal. However, the model was not adequate to 

describe the lag phase. The model was modified by Gibson 

et al. [43] to incorporate the lag phase, and have been 

successfully used in modelling many microbial growth 

curves to the point where its dominance in mathematically 

modelling bacterial growth and product formation curves  

have been acknowledged [23,28,44]. The model is expressed 

as follows (Eqn 7): 

 

( )( )MtBDN −−−= expexp
 

( ) ( )( )MtBDAN g −−−+= expexplog
  (7) 

D = the difference in product concentration, optical density or log cfu/ml value of the upper and 
lower asymptotes  
B = the maximum product concentration, death or growth rates at time M (h-1) 
M = the time at which the absolute production, death or growth rates at maximum occur (h) 
Ag = the lower asymptote value of the product concentration, optical density or log cfu/ml 

 

The model has its drawbacks and is not perfect with 
several main issues. Firstly, in the static version, N(t=0) is not 
equal to No. Secondly, an inflection point is the intrinsic 
property of the sigmoidal curve causing the model to have a 
systematic problem in describing the exponential phase 
(Baranyi et al., 1993). Finally, the model tend to over-estimates 
its parameter values [45–47]. 
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The asymmetrical sigmoidal shape of the modified 
Gompertz represents and may offer greater flexibility than the 
logistic. Sigmoidal models such as the logistic and Gompertz 
differ chiefly at the point of inflection between the lower and 
the upper asymptotes with the logistics and Gompertz models 
having the distance of 1/2 and 1/e between the lower and the 
upper asymptotes, respectively [28]. In an essence, other growth 
models provide flexible slope function and variable point of 
inflection between the lower and upper asymptotes. These 
functions are either special or simpler cases of a parent growth 
model. For instance, the Richard model incorporates the 
logistics, Gompertz or von Bertalanffy growth models 
[23,28,43]. 

 
Parameters obtained from the fitting exercise would be 

later used for secondary modelling of Mo-blue production using 
model such as the two-parameter Monod model or other more 
complex models “secondary models” such as Haldane, Aiba, 
Yano and others. These mechanistic models are used in basic 
research and are aimed to reach a better understanding of the 
physical, chemical and biological processes that lead to the 
growth profile seen. All other things being equal, mechanistic 
models are more powerful since they tell you about the 
underlying processes driving patterns. They are more likely to 
work correctly when extrapolating beyond the observed 
conditions [48]. 

 
CONCLUSION 

 

In conclusion, the Gompertz model was the best model in 

modelling the Mo-blue production curve of the bacterium 

Serratia marcescens strain DR.Y10 based on statistical tests 
such as root-mean-square error (RMSE), adjusted coefficient of 
determination (R2), bias factor (BF), accuracy factor (AF) and 
corrected AICc (Akaike Information Criterion). Parameters 
obtained from the fitting exercise were maximum Mo-blue 
production rate (µm), lag time (λ) and maximal Mo-blue 
production (Ymax) of X (h-1), Y (h) and Z (nmole Mo-blue), 
respectively. The use of bacterial growth models to obtained 

accurate Mo-blue production rate useful for further 

secondary model development is novel for molybdenum 

reduction to Mo-blue specifically and in heavy metals 

detoxification process in general as judged from literature 

search, and this work has demonstrated the applicability of 

such models. Current works include secondary modelling of 

the Mo-blue production from this bacterium especially on 

the inhibitory effect of the substrate molybdenum on the 

maximum Mo-blue production rate values obtained from 

this works. In addition, other secondary modelling works 

including the effect of environmental conditions (pH and 

temperature) on Mo-blue production rates are being carried 

out. 
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