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INTRODUCTION 
 
The coexistence of heavy metals and organic xenobiotic 
contaminants at polluted sites necessitates the use of diverse 
bacterial degraders or bacteria capable of detoxifying multiple 
toxicants simultaneously. Molybdenum, an essential trace metal, 
becomes toxic at high concentrations to various organisms. This 
metal is utilized in numerous industrial applications, including as 
an alloying agent, in automotive antifreeze, corrosion-resistant 
steel, and as a lubricant in the form of molybdenum disulfide. 
Due to its extensive industrial use, molybdenum has contributed 
to significant water pollution incidents globally, including in 
Tokyo Bay, Tyrol in Austria [1], and the Black Sea, where its 
concentration can reach several hundreds of ppb . Additionally, 
molybdenum is a notable pollutant in sewage sludge, posing a 

considerable health risk. Studies have shown that Molybdenum 
can cause considerable harm by impeding the production of 
sperm and halting the development of embryos in different 
organisms, even at concentrations as low as a few parts per 
million  [2]. It poses significant harm to ruminant animals, 
particularly cows, at comparable levels [3]. Aside from heavy 
metals, there are also organic pollutants that are considered 
significant environmental contaminants. These include 
xenobiotics like phenol, acrylamide, nicotinamide, acetamide, 
iodoacetamide, propionamide, sodium dodecyl sulfate (SDS), 
and diesel. Every year, large amounts of these chemicals are 
manufactured, resulting in significant pollution of ecosystems. 
Bioremediation is the most cost-effective approach for 
eliminating these pollutants, especially when they are present in 
low concentrations that cannot be effectively addressed by 
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 ABSTRACT 
Recent studies have shown that molybdenum is toxic to the process of spermatogenesis at 
concentrations of several parts per million, highlighting its significance as a toxic substance. We 
have previously identified a bacterium that has the ability to break down acrylamide in soils that 
have been contaminated. We found that this bacterium has the capability to convert the heavy 
metal molybdenum into molybdenum blue. The study examines the Mo-blue absorption spectra 
of Burkholderia sp. Dr. Y27, revealing a secondary peak at 700 nm and a primary peak ranging 
from 860 to 870 nm. It indicates that Mo-blue is probably a diminished heteropolymolybdate, 
aided by enzymatic reduction in media containing phosphate. The most favorable pH for 
molybdate reduction was determined to be approximately 6.0, while the optimal temperature 
range was found to be between 34 and 37°C. Multiple carbon sources were examined, and it was 
found that glucose, fructose, and 2-ketogluconate exhibited the greatest efficacy. The presence 
of heavy metals such as mercury and copper greatly suppressed the production of Mo-blue. This 
text discusses the potential of using bioremediation in tropical regions, specifically focusing on 
the ability of Burkholderia sp. Dr. Y27 to efficiently reduce molybdenum under optimal 
conditions. The results provide evidence for the capability of Burkholderia sp. Dr. Y27 to be a 
successful agent for molybdenum bioremediation, particularly in tropical settings, by optimizing 
factors such as pH, temperature, and carbon sources. Additional investigation is advised to 
examine its utilization in practical contexts. 
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physical and chemical methods. Phenol, a highly toxic substance, 
presents significant dangers to humans and other organisms. It 
can cause irritation and harm to mucous membranes, skin, eyes, 
and the respiratory tract when exposed to its vapors. Phenolic 
compounds in Malaysia are classified as one of the top three 
scheduled wastes, with an annual waste generation of over 1000 
metric tonnes. The maximum allowable phenol concentration in 
raw drinking water in Malaysia, as stated by the National 
Guidelines for Raw Drinking Water Quality, is 0.002 mg/L. 
Nevertheless, numerous groundwater wells and landfills in the 
nation exhibit phenol concentrations that surpass this threshold  
[4], suggesting extensive contamination. 
 

Certain microorganisms possess the capability to break 
down a wide range of foreign substances, known as xenobiotics. 
The adaptability of these microorganisms is highly sought after 
in areas that are heavily contaminated, where the presence of 
multiple pollutants is common [5]. Heavy metals reduction 
coupled with xenobiotic degradation has been reported [6]. 
Although phenol does not support molybdenum reduction, 
several molybdenum-reducing bacteria are able to grow on 
phenol as the sole carbon in previous works [7–10].  

 
Here, we evaluate the potential of various xenobiotics as 

electron donors for reduction and screen for the ability of an 
isolated bacterium that previously breaks down acrylamide [11] 
to convert molybdenum to molybdenum blue. Furthermore, we 
test whether the bacteria can use these xenobiotics as a carbon 
source for their own growth. We present here the results of our 
investigation into a new type of molybdenum-reducing bacterium 
that has the ability to biodegrade phenol, and amides found in soil 
that has been contaminated. Future bioremediation efforts 
involving amides as organic contaminants, and the heavy metal 
molybdenum could benefit from this bacterium's characteristics. 
 
MATERIALS AND METHODS 
 
Growth and maintenance of molybdenum-reducing 
bacterium 
The bacterium [11] was grown and maintained in Low Phosphate 
(LPM) and High Phosphate Media (HPM) [7]. The composition 
of the LPM were as follows: glucose (1%), (NH4)2.SO4 (0.3%), 
MgSO4.7H2O (0.05%), yeast extract (0.5%), NaCl (0.5%), 
Na2MoO4.2H2O (0.242 % or 10 mM) and Na2HPO4 (0.071% or 
5 mM) [12]. Bacterial reduction of molybdate is indicated by the 
production of blue colonies. An orbital shaker was used to reduce 
molybdenum in a 250 mL shake flask containing 100 mL of the 
aforementioned media at room temperature for 48 hours at a pH 
of 7.0. The shaking was done at 120 rpm. A 1.0 mL sample of the 
liquid culture's molybdenum blue (Mo-blue) was centrifuged at 
10,000 x g for 10 minutes at room temperature in order to analyze 
its absorption spectra. After that, a UV-spectrophotometer 
(Shimadzu 1201) was used to scan the supernatant from 400 to 
900 nm. To adjust for the baseline, low phosphate media was 
used. 
 
Preparation of resting cells for molybdenum reduction 
characterization  
Using resting cells in a static microplate or microtiter format, 
characterization studies on the reduction of molybdenum to Mo-
blue were conducted, following previously established 
methodologies. The effects of pH, temperature, and 
concentrations of phosphate and molybdate were examined [13]. 
Cultivating the cells at room temperature from a 1 L overnight 
culture in High Phosphate Media (HPM) was carried out on an 
orbital shaker, which was adjusted to 150 rpm. The only variation 
between HPM and LPM was the phosphate content, which was 

set at 100 mM for HPM. The cells were centrifgued at 15,000 x 
g for 10 minutes, rinsed several times to remove any residual 
phosphate, and resuspended in 20 mL of glucose-free Low 
Phosphate Media (LPM) to get cells with an absorbance of 
approximately 1.00 at A600 nm.  
 

The concentration of phosphate used in this experiment was 
5 mM, as all of the Mo-reducing bacteria that were isolated from 
LPM demonstrated optimal growth at that concentration. 
Following that, 180 µL of the cell suspension was transferred to 
every well of a sterile microplate using a pipette. Twenty 
microliters of sterile glucose was added to every well to start the 
creation of Mo-blue. The Corning® microplate, which allows gas 
exchange, was sealed with sterile tape and left to incubate at room 
temperature. On a regular basis, we used a BioRad Microtiter 
Plate reader (Model No. 680) to measure the absorbance at 750 
nm. The microplate reader's maximum filter wavelength was 750 
nm, of which measurement must be made with reference to the 
specific extinction coefficient of 11.69 mM-1 cm-1, which was 
used to quantify mo-blue production in the microplate 
format.[14].  
 
Evaluation of xenobiotics as potential electron donors for 
molybdenum reduction 
Utilizing the microplate format outlined earlier, the electron-
donating capabilities of xenobiotics like diesel, phenol, 
nicotinamide, acrylamide, acetamide, iodoacetamide, Sodium 
Dodecyl Sulfate (SDS), propionamide, and others were 
demonstrated. Taking into account their overall toxicity, these 
xenobiotics were substituted for glucose in the low phosphate 
medium in this experiment, with a final concentration of 500 
mg/L. Diesel was first sonicated for 5 minutes in 10 mL of media 
until it reached a final concentration of 0.5 g/L. Afterwards, 200 
µL of the mix was added to every well of the microplate. 
 
Reduction of molybdenum and heavy metals 
We used MERCK's commercial salts or Atomic Absorption 
Spectrometry standard solutions to prepare seven heavy metals: 
lead (II), copper (II), arsenic (V), mercury (II), chromium (VI), 
silver (I), and cadmium (II). The bacterium was exposed to 
different amounts of these heavy metals in a microplate format 
during incubation. For one day, at 30 ºC, the microplate was left 
to incubate. The wavelength 750 nm was used to measure Mo-
blue production, as mentioned earlier. 
 
Evaluation of xenobiotics for bacterial growth in a manner 
unrelated to molybdenum reduction 
This bacterium was able to grow on several aliphatic amides [15]. 
The microplate format was used to test the ability of diesel, 
phenol, and Sodium Dodecyl Sulfate (SDS) to support bacterial 
growth independent of molybdenum reduction. The following 
media were used, with a final concentration of 500 mg/L of these 
xenobiotics.   
 

The following were the components of the growth medium 
that had a high concentration of molybdenum removed because 
it could hinder the growth of xenobiotics: 0.3% ammonium 
sulfate, 0.2% sodium bicarbonate, 0.5% magnesium chloride, 
0.5% sodium bicarbonate, 0.705% sodium bicarbonate. The 
medium was adjusted to pH 7.0. Using a microplate reader (Bio-
Rad 680), we were able to measure the increase in bacterial 
growth after three days of incubation at room temperature at 600 
nm. 
 
Statistical analysis 
These values represent the means plus or minus the standard 
error. For this data analysis, we used Graphpad Prism 3.0 and 
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Graphpad InStat 3.05, both of which can be downloaded from the 
official Graphpad website at www.graphpad.com. We used either 
a Student's t-test or a one-way analysis of variance with post hoc 
analysis by Tukey's test to compare the groups. A statistically 
significant result was defined as P < 0.05. 
 
RESULTS AND DISCUSSIONS 

A previously isolated bacterium identified as Burkholderia sp. 
Dr.Y27 that was used to degrade acrylamide was discovered to 
be able to reduce molybdenum to Mo-blue. To date, this is the 
fourth bacterium from this genus that has been reported to be able 
to reduce molybdenum to molybdenum blue (Table 1). 
 

 
Table 1. Characterization of Mo-reducing bacteria isolated to date, an update [16]. 
 
Bacteria Country of 

origin 
Unique ability Optimal pH and 

tempe-rature 
Best 
carbon 
source 

PoO4 

(mM) 
MoO4 

(mM) 
Heavy metals 
inhibition 

Auth
or 

Raoultella ornithinolytica 
A1 

Iraq Psychrotolerant  pH 7.0 and 25 
°C 

glucose n.a. 10 n.a. [17] 

Enterobacter aerogenes 
strain Amr-18 

Egypt Acrylamide can act as electron donor.  acrylamide, 
acetamide, and propionamide as N source for 
growth   

6.3 and 6.8 glucose 7.5 15 – 20  Ag+, Cu2+  
 Hg2+ 

[18] 

Pseudomonas sp. strain 
Neni-4 

Indonesia growth on phenol, benzoate, salicylic acid, and 
catechol 

6.3 
25 and 40 °C 

glucose  5.0-7.5 15-20 n.a. [7] 

Pseudomonas putida strain 
Neni-3 

Indoensia Decolorizaton of Congo Red 6-6.5 
25 to 37 °C  

glucose 2.5-7.5  10-15 n.a. [8] 

Serratia sp. strain Amr-4 Egypt Growth on the pesticides carbamates carbofuran and 
carbaryl  

6.0 and 6.8 and 
between 30 and 
34 oC 

glucose 2.5-7.5 20-30 Ag+, Pb2+, Cu2+  
 Hg2+ 

[19] 

Escherichia coli strain 
Amr-13  

Egypt Growth on PEG 200, 300 and 600 5.5 and 8.0 
30 and 37 oC 

glucose 5 10-30  n.a. [20] 

Bacillus sp. strain Zeid 15  Growth on acrylamide and propionamide as well as 
sources of electron donor for reduction 

 6.0 
 
25 and 34  oC 

glucose 2.5-5 15-20 Cu2+, Hg2+, Ag+, and 
Cr6+  

[21] 

Bacillus sp. strain Neni-8 Indonesia Growth  on  various  PEGs  such  as  200,  300    
and    600 

 6.3 and 6.5, and 
between 30 and 
37 °C 

glucose 2.5-7.5 20-30 Cu2+, Hg2+, Ag+, and 
Cr6+  

[22] 

Bacillus amyloliquefaciens 
strain Neni-9 

Indonesia  
Growth on the pesticides carbaryl and carbofuran  

pH 6.3 and 6.5,  
30-37 oC 

glucose 5.0-7.5 20-30  Ag+, Cr6+, Cu2+  
 Hg2+ 

[23] 

Pseudomonas sp. Nigeria  pH 6.5-7.5 
37 ᵒC 

glucose  
 

3.5-7.5 100 
 

n.a. [24] 

Pantoea sp. strain HMY-P4 Nigeria  pH 6.0-8.0 
35-40 ˚C 

glucose  5.0 20-40 n.a. [25,2
6] 

Enterobacter cloacae 
 

Nigeria   pH 6.5-7.0 
35-40 °C 

glucose 5.0-7.5 80-100 n.a. [27,2
8] 

Morganella sp. 
  

Nigeria   pH 6.0-7.5 35 
°C 

glucose  3.5  40 n.a. [29] 

Pseudomonas. strain Dr.Y 
Kertih 

Malaysia growth on various xenobiotics- phenol,  sodium 
dodecyl sulfate (SDS), acrylamide, acetamide, 
nicotinamide, propionamide, iodoacetamide, 
acetamide and diesel  

pH 6.0- 6.3 25-
40 oC. 

glucose 5.0 20  Ag+, Pb2+, As5+  
 Hg2+ 

[30] 

Clostridium pasteurianum 
BC1 
(USA) 

USA metallic (Mo0) nanoparticles 5–20 nm in size 
degradation of methyl orange 

pH 6.8 
n.a. 

peptone 1.74 20.67  [31] 

microbial electrolysis cells 
consortium 
(China) 

China Tungsten reduction and acetate biodegradation 
Hydrogen production 

 
pH 3.0 
22 oC 

acetate n.a. 1 n.a. [32] 

Raoultella ornithinolytica 
strain Mo1 

Egypt   pH 6, 
30 oC 

glucose  20 n.a. [33] 

Raoultella planticola strain 
MoI 

Iraq  
 

pH 6, 
30 oC 

glucose  20 n.a. [33] 

Bacillus sonorensis strain 
Pharon3 (MK078035) 

Egypt Thermophilic bacterium pH 7.07 52.2 °C glucose 4.0 10  [34] 

Bacillus tequilensis strain 
Pharon2 (MK078034)  

Egypt Thermophilic bacterium pH 7.02 46.1 °C sucrose 4.0 10  [34] 

Bacillus sp. strain Neni-12 Indonesia  growth on coumaphos pH 6.3  
25-37 oC 

glucose 5.0 15-20 Ag+, Cr6+, Hg2+ 
  

[35] 

Pseudomonas sp. 
 

Nigeria  pH 6.5-7.0 
35- 40 °C 

glucose 3.5 40-60 n.a. [36] 

Burkholderia vietnamiensis 
AQ5-12 

Malaysia  Growth on glyphosate  pH 6.25-8.0  
30-40 °C  

glucose 5.0 40-60  n.a. [37] 

Burkholderia 
sp. AQ5-13 

Malaysia  Growth on glyphosate  pH 6.25-8.0 
35-40 °C 

glucose 5.0 40-50 n.a. [37] 

Serratia marcescens strain 
KIK-1 

Nigeria Decolorize various azo and triphenyl methane dyes pH 5.8-6.5 
34-37 oC 

glucose 5.0 10-25 Ag+, Cr6+, Hg2+, 
Cu2+ 

[38] 

Pseudomonas putida strain 
Egypt-15 

Egypt  Growth on 
PEG 4000 

pH 6.5 
34 °C 

glucose 5.0 20 n.a. [39] 

Bacillus amyloliquefaciens Malaysia  Growth on SDS 
 

pH 5.8-6.3 
25-34 oC 

glucose 5.0-7.5  30-50   Hg2+, Cu2+  
 Ag+ 

[40] 

Serratia sp. strain HMY1 Nigeria Growth on cyanide pH 6.5-7.0 
30-35 °C 

sucrose 3.95 55 n.a. [41–
43] 

Enterobacter sp. Strain 
Saw-2 

Malaysia Growth on phenol and catechol  
 

pH 6.3-6.8  
34-37 oC 

glucose 5.0 15-30 n.a. [9] 

Serratia sp. strain HMY3 Nigeria Growth on cyanide pH 6.5  
35 °C 

sucrose 3.95  55-57.5 As3+, Cr6+, Hg2+,  
Cu2  

[44] 

Bacillus sp. strain Neni-10 
 

Indonesia Growth on dye Metanil Yellow pH 6.3  
34 °C 

glucose 2.5-7.5 20 Ag+, Cu2+, Cr6+, Hg2+ [45,4
6] 
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Pseudomonas sp. strain 135 Malaysia Growth on acrylamide, acetamide and 
propionamide 
acrylamide can support Mo-blue production 

pH 6.0-6.3 
25-40 oC 

glucose 5.0-7.5 15-25 Ag+, Cu2+, Cd2+, Hg2+ 
 

[47] 

Serratia marcescens strain 
DR.Y10 

Malaysia Growth on acrylamide, propionamide and 
acetamide  

pH 6.0-6.5  
30-37 °C 

glucose 5.0 10-30 
 

Ag+, Cu2+, Cr6+, Hg2+ [48] 

Pseudomonas aeruginosa 
strain KIK-11  

Malaysia grow on diesel and SDS pH 5.8-6.0  
25-34 oC  

glucose 5.0-7.5 30-40 Ag+, Cu2+, Hg2+ [49] 

Serratia sp. strain MIE2 
 

Malaysia  pH 6.0 
27 to 35oC 

sucrose 3.95 20 Hg2+, Zn2+, Cu2  [50,5
1] 

Bacillus sp. strain khayat 
 

Malaysia Growth on SDS and diesel pH 5.8-6.8 
34 oC 

glucose 5-7.5 10-20 Ag+, 
As3+, Pb2+, Hg2+, Cu2+ 

[52] 

Burkholderia sp.strain neni-
11  

Indonesia  Growth on acrylamide pH 6.0-6.3 
30-37 oC 

glucose 5 15 Ag+, 
Cr6+, Hg2+ 

[53] 

Enterobacter sp. strain Aft-
3 (Pakistan) 

Pakistan  Growth on azo dye pH 5.8-6.5 
37 oC 

glucose 5 20-25 Ag+, 
Cu2, Hg2+ 

[54] 

Klebsiella oxytoca strain 
saw-5 

Malaysia  Growth on glyphosate pH 6.3-6.8 
34 oC 

glucose 5 20-30 Ag+, Cd2+, Cr6+, Hg2+, 
Cu2+ 

[55] 

P. aeruginosa strain Amr-
11 

Egypt Growth on phenol pH 6.3-6.8 
34 oC 

glucose 2.5-7.5 20-30 Ag+, As3+, Pb2+, Cd2+, 
Cr6+, Hg2+, Cu2+ 

[56] 

Klebsiella oxytoca strain 
Aft-7 

Pakistan  Growth on SDS pH 5.8-6.3 
25-34 oC 

glucose 5-7.5 5-20 Ag+, As3+, Pb2+, Cd2+, 
Cr6+, Hg2+, Cu2+ 

[57] 

Enterobacter sp. strain 
Zeid-6  

Sudan Growth on Azo dye Orange G pH 5.5-8.0 
30-37 oC 

glucose 5 20 Ag+, Pb2+, Hg2+, Cu2+, [58] 

Pseudomonas putida strain 
Amr-12 

Egypt Growth on phenol catechol pH 6.0-7.0 
20-30 oC 

glucose 5.0-7.5 20-30 Ag+, Cr6+, Hg2+ [59] 

Enterobacter 
 sp. Strain Neni-13 

Indonesia Growth on SDS pH 6.0-6.5 
37 oC 

glucose 2.5-5.0 15 Ag+, Cd2+, Hg2+, Cu2+ [60] 

Bacillus sp. strain Zeid 14 Sudan Growth on amides and acetonitrile 
acrylamide can support reduction 

pH 6.0-6.8 25-
34 oC 

glucose 5.0-7.5 10-20 Ag+, Cd2+, Cr6+, Hg2+, 
Cu2+ 

[61] 

Klebsiella oxytoca strain 
DRY14 

Malaysia Growth on SDS pH 7.0 
25 oC 

glucose 5 25-30 Ag+, Pb2+, Cd2+, Cr6+, 
Hg2+, Cu2+ 

[62] 

Bacillus pumilus strain lbna Malaysia  pH 7.0-8.0 
37 oC 

glucose 2.5-5 40 As3+, Pb2+, Zn2+, Cd2+, 
Cr6+, Hg2+, Cu2+ 

[63] 

Bacillus sp. strain A.rzi 
 

Malaysia  pH 7.3 
28-30 oC 

glucose 4 50 Cd2+, Cr6+, Cu2+, 
Ag+, Pb2+, Hg2+, Co2+, 
Zn2+ 

[64] 

Pseudomonas sp. strain 
DRY1 

Antarctica  pH 6.5-7.5 
15-20 oC 

glucose 5 30-50 Cd2+, Cr6+, Cu2+, 
Ag+, Pb2+, Hg2+ 

[65] 

Klebsiella oxytoca strain 
hkeem 

Malaysia  pH 7.3 
30 oC 

fructose 4.5 80 Cu2+, Ag+, Hg2+ [66] 

Pseudomonas sp. strain 
DRY2 

Malaysia  pH 6.0 
40 oC 

glucose 5 15-20 Cr6+, Cu2+, Pb2+, Hg2+ [67] 

Acinetobacter calcoaceticus 
strain Dr.Y12 

Malaysia  pH 6.5 
37 oC 

glucose 5 20 Cd2+, Cr6+, Cu2+, Pb2+, 
Hg2+ 

[68] 

Enterobacter sp. strain 
Dr.Y13 

Malaysia  pH 6.5 
37 oC 

glucose 5 25-50 Cr6+, Cd2+, Cu2+, Ag+, 
Hg2+ 

[69] 

S. marcescens strain Dr.Y9 Malaysia  pH 7.0 
37 oC 

sucrose 5 20 Cr6+, Cu2+, Ag+, Hg2+ [12] 

Serratia sp. strain Dr.Y8 Malaysia  pH 6.0 
37 oC 

sucrose 5 50 Cr6+, Cu2+, Ag+, Hg2+ [70] 

5Serratia sp. strain DrY5 Malaysia The 1st purification of Mo-reducing enzyme pH 7.0 
37 oC 

sucrose 5 30 Cu2+ [71–
75] 

Serratia marcescens strain 
DRY6 

Malaysia  pH 7.0 
35 oC 

sucrose 5 15-25 Cr6+, Cu2+, Hg2+ [76] 

Enterobacter cloacae strain 
48 

Malaysia  pH 7.0 
30 oC 

sucrose 2.9 20 Cr6+, Cu2+ [77] 

Escherichia coli K12 n.a.  pH 7.0 
30-36 oC 

glucose 5 80 Cr6+ [78] 

-continue from last page 
 
Molybdenum absorbance spectrum 
The Mo-blue absorption spectra of Burkholderia sp. Dr. Y27 
showed a shoulder at about 700 nm and a maximum peak in the 
infra-red range of 860 to 870 nm, with a median at 865 nm, as 
represented in Fig. 1. Due to its complex structure and abundance 
of species, determining the Mo-blue's identity is no easy matter 
[79]. Isopolymolybdate and heteropolymolybdate are two types 
of molybdenum complexes, and Mo-blue is a reduced byproduct 
of one of these. It has been suggested by Campbell et al. [78] that 
the Mo-blue seen in molybdenum reduction by E. coli K12 is 
actually phosphomolybdate in its reduced form, but no one has 
yet explained how this happens. Because the conversion requires 
strong reducing agents and acidic conditions, it is not feasible to 
form isopoly Mo-blue from molybdate itself using biologically 
based reducing agents. Based on the results of the phosphate 
determination method using ascorbic acid, it is more likely that 
heteropoly Mo-blue is formed by enzymatic reduction or 
biologically based reducing agents [80]. It was postulated that the 
phosphomolybdate intermediate is required for microbial 
molybdate reduction in phosphate-containing media. The pH 

drops as bacteria grow, which converts molybdate to this 
structure. In other words, molybdenum reduction to Mo-blue 
involves chemical and biological processes. Assuming this 
mechanism is successful, the Mo-blue absorption spectra 
produced by this bacterium should be very similar to those seen 
when determining phosphate levels. Specifically, there was a 
shoulder at around 700 nm and maximum absorption in the 860–
870 nm range in the measured spectrum. Peak absorption at 880–
890 nm and a shoulder at 700–720 nm are typical features of the 
Mo-blue spectra obtained by the phosphate determination 
method [81]. This requirement is satisfied by all Mo-blue spectra 
observed in other bacteria, as demonstrated earlier [79]. In this 
study, the absorption spectra results provide credence to the 
theory by suggesting a comparable spectrum. The 
phosphomolybdate species must be precisely identified using 
n.m.r and e.s.r. because of the compound's complex structure. 
The scanning spectroscopic profile analysis of 
heteropolymolybdate species, on the other hand, is a more 
convenient and widely used technique for spectrophotmetric 
characterization [82]. Despite Mo-max blue's absorption 
wavelength being 865 nm, measurements taken at 750 nm—
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roughly 30% lower—were sufficient for regular monitoring of 
Mo-blue production due to the significantly higher intensity 
compared to cellular absorption at 600-620 nm [13]. The 
production of Mo-blue has been previously monitored using a 
variety of wavelengths, including 710 nm [77] and also 820 nm 
[78]. 

 
 
Fig. 1. An absorption spectrum of Mo-blue from Burkholderia sp. Dr. 
Y27 scanned over time. 
 
Effect of pH and temperature on molybdate reduction to Mo-
blue measured at 750 nm 
Burkholderia sp. Dr.Y27 was incubated at different pH ranging 
from 5.5 to 8.0 using Bis-Tris and Tris.Cl buffers (20 mM). 
Analysis by ANOVA indicates that the optimal pH for molybdate 
reduction to Mo-blue is around 6.0, as this point shows the 
highest absorbance at 750 nm. The activity decreases 
significantly beyond pH 6.5, indicating reduced efficiency of the 
reduction process at higher pH levels (Fig. 2).  The effect of 
temperature (Fig. 3) was observed over a wide range of 
temperature (20 to 60 °C) with an optimum temperature ranging 
from 34 °C to 37 °C with no significant different (p>0.05) among 
the values measured as analysed using ANOVA. Temperatures 
higher than 37 oC were strongly inhibitory to Mo-blue production 
from Burkholderia sp. Dr.Y27. 
 

 
Fig. 2.  Effect of pH on molybdenum reduction by Burkholderia sp. 
Dr.Y27. For exactly 72 hours, the bacteria's resting cells were placed in 
an ideal environment within a microtiter plate. n = 3, the error bars show 
the mean ± standard deviation. 
 

 
 
Fig. 3.  Effect of temperature on molybdenum reduction by Burkholderia 
sp. Dr.Y27. For exactly 72 hours, the bacteria's resting cells were placed 
in an ideal environment within a microtiter plate. n = 3, the error bars 
show the mean ± standard deviation. 
 

Because molybdenum reduction is an enzyme-mediated 
process, changes in temperature and pH can influence protein 
folding and enzyme activity, which in turn can inhibit 
molybdenum reduction. Tropical countries, such as Malaysia, 
with annual average temperatures of 25 to 35 oC, provide ideal 
circumstances for bioremediation [76]. Thus, Burkholderia sp. 
Dr.Y27 may have potential as a molybdenum soil bioremediation 
agent both in this region and others in the tropics. Between 25 
and 37 ºC is the best range for most Mo-reducers (Table 1) as 
they are isolated from tropical soils with a few psychrotolerant 
reducer isolated from Antarctica and Iraq showing an optimal 
temperature supporting reduction of between 15 and 20 ºC and 
less than 25 °C, respectively [65].  

 
Because of its neutrophilic nature, Burkholderia sp. Dr.Y27 

displays an optimal pH range that allows it to support 
molybdenum reduction. Neutrophils can thrive in environments 
with a pH range of 5.5 to 8.0, which is one of their defining 
features. An essential note about molybdenum reduction in 
bacteria is that the ideal pH for the process is slightly acidic, 
falling somewhere between 5.0 and 7.0 (Table 1). Presumably, 
the formation and stability of phosphomolybdate prior to its 
reduction to Mo-blue are significantly impacted by acidic pH. 
Therefore, the ideal reduction happens when the stability of the 
substrate and the activity of the enzyme are both optimized [79]. 
 
Effect of electron donor on molybdate reduction 
Glucose, fructose, 2-ketogluconate, mannose, sucrose, L-
arabinose, mannitol, xylose, meso-inositol, trehalose, and citrate 
were the best electron donors for supporting molybdate 
reduction, in descending order, according to Fig. 4. Molybdenum 
reduction was not supported by other carbon sources like 
glycogen, methyl-mannoside, D-melezitose, inulin, starch, and 
D-turanose, perhaps due to the inability of this bacterium to 
metabolize these substrates. In the presence of carbon sources in 
the medium, the bacteria could utilize metabolic pathways like 
glycolysis, Kreb's cycle, and electron transport chain to produce 
NADH and NADPH, which are substrates that donate electrons. 
The electron-donating substrates for molybdenum reducing 
enzymes are NADH and NADPH [83,84].  
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Fig. 4. Inhibition of molybdenum reduction by various electron donor 
sources (1% w/v). A variety of electron donors and 10 mM molybdate 
were added to low phosphate media in which Burkholderia sp. Dr.Y27 
was cultured. For exactly 72 hours, the bacteria's resting cells were placed 
in an ideal environment within a microtiter plate. n = 3, the error bars 
show the mean ± standard deviation. 
 
Effect of phosphate and molybdate concentrations to 
molybdate reduction 
Because both phosphate and molybdate anions inhibit bacterial 
Mo-blue production (Table 1), determining their optimal 
concentrations is important for molybdenum reduction. Fig. 5 
shows that the ideal phosphate concentration was 5-7.5 mM, and 
that concentrations higher than that were highly inhibitory to 
reduction. Since phosphomolybdate is only stable in acidic 
environments, it stands to reason that a high phosphate 
concentration would reduce its stability. This is because 
phosphate buffers are more effective under high phosphate 
concentrations. Furthermore, for some reason, high phosphate 
makes the phosphomolybdate complex itself unstable [85–87]. 
For optimal reduction, none of the molybdenum-reducing 
bacteria that have been discovered thus far require phosphate 
concentrations greater than 5 mM (Table 1).  
 

The newly-isolated bacterium reduced molybdenum 
concentrations as high as 60 mM with reduced Mo-blue 
production, according to studies that examined the effect of 
molybdenum concentration on molybdenum reduction. Fig. 6 
shows that the ideal concentration range for reduction was 10–50 
mM. The strain would be able to reduce molybdenum pollution 
at high concentrations if it reduced to an insoluble form at this 
concentration. According to the literature, Pseudomonas sp. 
strain Dr.Y2 requires a minimum of 15 mM of molybdenum for 
optimal growth [81], whilst the highest molybdenum required for 
optimal reduction was 80 mM in E. coli K12 [78] and Klebsiella 
oxytoca strain hkeem [66]. The ideal molybdate concentrations, 
which typically range from 20 to 50 mM, could be utilized by 
other Mo-reducing bacteria to produce Mo-blue (Table 1). 
Actually, molybdenum pollutant levels as high as 2000 ppm, or 
around 20 mM, have been found in the environment. [88].  
  

 
Fig. 5. The effect of phosphate concentration on molybdenum reduction 
by Burkholderia sp. Dr.Y27. For exactly 72 hours, the bacteria's resting 
cells were placed in an ideal environment within a microtiter plate. n = 3, 
the error bars show the mean ± standard deviation. 
 

 
Fig. 6. The effect of molybdate concentration on molybdenum reduction 
by Burkholderia sp. Dr.Y27. For exactly 72 hours, the bacteria's resting 
cells were placed in an ideal environment within a microtiter plate. n = 3, 
the error bars show the mean ± standard deviation. 
 
Effect of heavy metals 
Fig. 7 shows that when different metals were added to 
Burkholderia sp. Dr. Y27 at a concentration of 1 ppm, the Mo-
reducing activity of the bacteria was inhibited to varying degrees. 
Mercury and copper inhibited Mo-blue production by 45.5 and 
16.3%, respectively. Heavy metals and other metal ions having 
inhibitory effects are a big issue in bioremediation. Screening and 
isolating bacteria with a wide range of metal resistance 
capabilities is, thus, crucial. Shukor et.al. [89] proved that 
mercury was found to be the physiological inhibitor to molybdate 
reduction, while other metal ions may be pseudo inhibitors. A 
review of the heavy metal types that inhibited molybdenum-
reducing bacteria revealed that poisonous heavy metals inhibit 
nearly all of the reducers (Table 1).  
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Enzymes typically have their sulfhydryl groups targeted by 
heavy metals like copper, cadmium, silver, and mercury [90]. It 
is well-known that chromate inhibits enzymes like glucose 
oxidase [91]. When heavy metals are bound to an enzyme, it 
rendered it incapable of reducing metals.  

 
Fig. 7. The effect of metals on Mo-blue production by Burkholderia sp. 
Dr.Y27. Resting cells of the bacterium were incubated in a microtiter 
plate under optimized conditions for 72 hours. Error bars represent mean 
± standard deviation (n = 3). 
 
A novel approach to molybdenum reduction and autonomous 
growth using xenobiotics as electron donors 
So far, nearly every strain of molybdenum-reducing bacteria has 
been able to convert molybdenum into molybdenum blue using 
easily assimilable carbon sources such as glucose and sucrose 
while very few could use other non-easily assimilable carbon 
sources as sources of electron donors. The exception is 
Enterobacter aerogenes strain Amr-18, where acrylamide can be 
used as an electron donor for Mo-bleu production (Table 1). The 
potential of different xenobiotics to facilitate molybdenum 
reduction was investigated. While other xenobiotics failed to 
support molybdenum reduction, acrylamide did so at a lesser 
efficiency than glucose (Fig. 8).  Xenobiotics like phenol could 
be utilized as electron donors in chromate reduction [6] but was 
not found to be a source of electron donor for molybdenum 
reduction in this study. The bacterium was able to grow on 
phenol, acrylamide, acetamide and propionamide as a carbon 
sources and energy for growth (Fig. 9). Bacteria that could 
degrade phenol include Pseudomonas species [92–95], Bacillus 
brevis [96], Alcaligenes sp. [97], Ochrobactrum sp. [98], 
Acinetobacter sp. [99] and Rhodococcus species [100].  

 
 
Fig. 8. Mo-blue reduction by xenobiotics at 10 mM in low phosphate 
media. Glucose was the positive control.  Resting cells of the bacterium 
were incubated in a microtiter plate under optimized conditions for 72 
hours. Error bars represent mean ± standard deviation (n = 3). 

 
Fig. 9. Growth of Burkholderia sp. Dr.Y27 on xenobiotics independent 
of molybdenum reduction. Glucose was the positive control.  Resting 
cells of the bacterium were incubated in a microtiter plate under 
optimized conditions for 72 hours. Error bars represent mean ± standard 
deviation (n = 3). 
 
CONCLUSION 

 
The study shows that Burkholderia sp. Dr. Y27 can efficiently 
convert molybdate to Mo-blue under ideal conditions. The 
absorption spectrum of the converted product exhibits a peak at 
860-870 nm and a smaller peak at 700 nm. The pH that yielded 
the best reduction results was approximately 6.0, while the 
temperature range that produced optimal outcomes ranged from 
34 to 37°C. Multiple carbon sources, particularly glucose, 
fructose, and 2-ketogluconate, greatly facilitated the reduction of 
molybdate. The process was hindered by heavy metals, 
specifically mercury and copper. The results emphasize the 
possible use of Burkholderia sp. Dr. Y27 for molybdenum 
bioremediation, particularly in tropical environments with 
appropriate temperature conditions. Additional investigation is 
necessary to comprehensively comprehend the biochemical 
mechanisms and practical implementations in real-world 
settings. This bacterium possesses a valuable characteristic for 
bioremediation as it has the desirable capability to detoxify 
various toxic substances. Malaysia is contemplating enacting a 
law to ban the importation of foreign microbes and genetically 
modified organisms (GMOs) for the purpose of using them in 
xenobiotic bioremediation. In light of this, we believe that our 
locally obtained isolate shows great potential for effectively 
treating polluted land and water bodies in Malaysia. The 
bacterium is currently undergoing active purification efforts to 
isolate the molybdenum-reducing enzyme it produces. 
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