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INTRODUCTION 
 
Glyphosate, a broad-spectrum herbicide, is commonly used to 
control various plants. Its extensive usage has raised health 
worries regarding detecting glyphosate byproducts in various 
products. While animal studies have shown the risks of 
glyphosate to organs, reproduction, and the nervous system, there 
is evidence connecting it to cancer in humans. Environmental 
tests frequently find glyphosate in water samples due to its use in 
farming. With increasing evidence of glyphosate's effects on 
living beings, efforts are being made to prevent its buildup in soil 
and water sources and develop methods for its removal after 
contamination [1–8]. Globally, herbicide use is estimated at 

125,000 to 130,000 tons annually. Concerns over its toxicity and 
health effects have led more than 20 countries to ban glyphosate 
for purposes. Despite these bans, farmers in some nations like 
Indonesia and Malaysia continue using glyphosate without 
measures, leading to significant health hazards. Experts suggest 
bioremediation of glyphosate as an eco alternative to degradation 
methods using chemicals or physical means. Bioremediation, a 
potentially safer method, uses microbes' metabolic processes to 
break down glyphosate into less harmful substances, providing a 
sustainable solution to glyphosate contamination in agricultural 
settings  [9–15]. 
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 ABSTRACT 
The study utilized a Box-Behnken experimental design to assess the impact of three parameters 
on the percentage of glyphosate biodegradation by a bacterium. The variables examined were 
incubation period (measured in days), glyphosate concentration (measured in grams per liter), 
and pH, each assessed at three different levels. The quadratic model, which has squared terms, 
interaction products, linear terms, and an intercept, most accurately characterizes the connection 
between the variables and the response. The findings demonstrated that glyphosate concentration 
exerted the most pronounced impact on glyphosate degradation, with pH ranking second, as 
supported by substantial F-values and low p-values. The incubation period had no discernible 
effect. The ANOVA analysis validated the dependability of the model, as evidenced by an R² 
value of 0.9602 and an adjusted R² value of 0.9091. These values indicate that the model accounts 
for 90% of the variability observed in the response data. The contour and response surface plots 
demonstrated substantial interactions among the variables, specifically between pH and 
glyphosate concentration and between the incubation period and glyphosate concentration. The 
model's anticipated optimal conditions were experimentally tested, demonstrating no significant 
deviation from the projected values. The predicted maximum biodegradation of 90.097% closely 
matched the experimentally observed value of 92.505% (p>0.05). The predicted combination to 
give the desired maximum response was at pH 6.81, glyphosate concentration of 0.692 g/L and 
an incubation period of 3.092 days. On the other hand, the predicted combination to give the 
desired maximum response is based on the requirement for the conditions where biodegradation 
is at the highest possible glyphosate concentration of 0.844 g/L and an incubation period of 3.112 
days. A higher response of about 5.779% degradation was achieved through RSM. This study 
showcases the efficacy of the Box-Behnken design in optimizing biodegradation processes, 
offering a solid statistical basis for further investigations on glyphosate degradation. 
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Glyphosate works as an herbicide by blocking the enzyme 5 
enolpyruvyl shikimate 3 EPSP) synthase, a part of the shikimate 
pathway found in various organisms, like plants, bacteria, algae, 
and fungi. This pathway is essential for creating amino acids 
(tryptophan, phenylalanine, and tyrosine) and vitamins (folic acid 
and menaquinone). EPSP synthase aids in converting acid 3 
phosphate (S3P) and phosphoenolpyruvate (PEP) into EPSP. By 
stopping synthase function, glyphosate disrupts the production of 
these compounds, hindering biodegradation and development in 
affected species  [16–19]. With the harmful effects of glyphosate 
on living organisms becoming more evident, concerns about 
managing and reducing its impact are growing. This includes 
finding ways to prevent its buildup in the environment and 
practical techniques for removing it from contaminated soils and 
water sources. These actions are crucial for dealing with 
glyphosate and its potential health and ecosystem risks. 
 

In fundamental research, experiment planning is often 
"intuitive". Biologists have long done "one factor at a time" 
experiments. This strategy keeps all components and variables 
the same except for the thing being researched, whose output is 
assessed. This technique may reveal "major effects" in biological 
research but will provide incorrect words due to component 
interactions. Because the process is complex, regulating several 
input elements is necessary for optimal results. DOE's core issue 
structure considers several factors that may affect process output. 
A model is proposed to characterize the system's output based on 
influential factors. These "response surface" models use 
continuous inputs and are usually first-order (linear) or second-
order (quadratic) polynomials. When multiple factors affect a 
reaction or design, the response surface technique helps.  
 

The response surface method (RSM) is a statistical 
technique used to choose a design for an experiment, identify the 
most effective levels or optimal points for several independent 
parameters, predict and verify model equations, and generate 
contour plots and response surfaces [20]. RSM has been used 
effectively to enhance biodegradation, biotransformation, and 
bioremediation processes such as the degradation of cyanide 
[21], phenol degradation [22], caffeine degradation [23], 
hexavalent chromium and molybdenum reduction to a less toxic 
form [24]. RSM optimizes yield within a process range computed 
using mathematical and statistical software like Design Expert® 
or MATLAB®. RSM strives for optimal performance with few 
resources. 2-D and 3-D contour plots show the ideal response and 
the effects of two components and interactions by setting optimal 
concentrations for other parameters. Visualize optimal replie. 
[25]. Two popular optimization methods are Box Behnken (BB) 
and Central Composite Design (CCD) [26,27]. In this study, the 
Box-Behnken approach will be selected for the optimization of 
glyphosate degradation by a previously-isolated glyphosate-
degrading bacterium.  
 
 
MATERIALS AND METHODS 
 
Growth and maintenance of glyphosate-degrading bacterium 
The bacterium, previously isolated from the soil near Lake 
Maninjau in West Sumatra, Indonesia (Rusnam et al., 2023), was 
characterized for its ability to degrade glyphosate using a 
minimal salts medium (MSM) supplemented solely with 
glyphosate as the phosphorus source.  
 
 
 
 

The bacterium was previously stored in glycerol stock and was 
revived from a 16% glycerol stock by growing the pure culture 
overnight in 10 mL of nutrient broth. From this culture, 0.1 mL 
was transferred into 45 mL of glyphosate enrichment medium in 
a 100 mL volumetric flask, and the culture was incubated at 150 
rpm for 48 hours at 25℃ on an incubator shaker (Certomat R, 
USA). The minimal salts medium (MSM) used for growth 
contained the following components per liter: 0.5 g of NaCl, 0.5 
g of KCl, 2 g of NH4SO4, 0.2 g of MgSO4.7H2O, 0.01 g of CaCl2, 
0.001 g of FeSO4  [28]. To ascertain the bacterial count, one-
milliliter samples were consecutively diluted in sterile tap water 
and then cultured on nutrient agar plates. Glyphosate underwent 
filter sterilization using PTFE syringe filters with a pore size of 
0.45 microns.  
 
Determination of glyphosate using HPLC 
The glyphosate breakdown was measured using a High 
Performance Liquid Chromatography (HPLC) technique [29]. 
This study utilized an isocratic gradient elution technique. The 
equipment consisted of a Water’s 600 series HPLC with Waters 
600 Quat Pump; Waters 600 Controller(LCD) and a Waters 996 
PDA Detector. Separating different components was 
accomplished through chromatography utilizing a Thermo 
Scientific™ BioBasic™ reversed-phase C18 HPLC column. The 
mobile phase consisted of a solution of 6.2 millimolar (mM) 
potassium dihydrogen phosphate (KH2PO4) in 4% (v/v) 
methanol. The pH of the solution was adjusted to 2.1 using 85% 
phosphoric acid. The flow rate was consistently maintained at 1 
mL/min, while the detection wavelength was specifically fixed at 
195 nm. 
 
Optimization study using RSM  
Response Surface Methodology (RSM) is a statistical technique 
employed to enhance and refine the optimization process in order 
to attain the most optimal response. This work utilized BB as a 
response surface methodology (RSM), which involves three 
sequential steps: designing and setting up the experiment, doing 
response surface modeling using regression, and finally, 
optimization. A second-order polynomial equation was used to 
establish the link and interrelationship between the input 
variables and the experimental response variable. The equation is 
presented in the subsequent format: 

y = β0 + �βi

k

i=1

xi + �βiixii2
k

i=1

+ ��βijxixj + error
k

j>1

k−1

i=1

 

 
The equation depicts a regression model, where y represents 

the estimated response variable. β0 is the regression constant, βi 
is the linear regression coefficient, βii is the quadratic regression 
coefficient, and βij is the bilinear regression coefficient. This 
study employed a three-level, three-factor Box-Behnken design 
(BBD), as described in Table 1. The design incorporated 
significant components identified in a two-level factorial 
experiment, the results of which will be published separately.  

 
The outcome was the measurement of glyphosate 

degradation, represented as a percentage of degradation. The 
Box-Behnken design (BBD) consisted of 17 randomized 
experimental runs (as shown in Table 2) in order to minimize the 
impact of uncontrolled extraneous factors on the observed 
results. The experimental runs included 12 factorial points and 
five center points, which were utilized to evaluate the effect of 
curvature in the experimental areas. 
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Table 1. Coded and uncoded levels of the independent variables. 
 

Factor Name Units Type SubType Mini-
mum 

Maxi-
mum 

Coded 
Low 

Coded 
High Mean Std. 

Dev. 

A Glyph-
osate g/L Num-

eric 
Cont-
inuous 0.3 1.0 -1 ↔ 0.3 +1 ↔ 1.0 0.65 0.2475 

B Incub-
ation Days Num-

eric 
Cont-
inuous 2.00 4.0 -1 ↔ 2.0 +1 ↔ 4.0 3.00 0.7071 

C pH  Num-
eric 

Cont-
inuous 6.50 7.5 -1 ↔ 6.5 +1 ↔ 7.5 7.00 0.3536 

 
Table 2. Experimental design and results of Box-Behnken for the 
biodegradation of glyphosate. 
 
 Factor 1 Factor 2 Factor 3 Response 1 
Run A:Glyphosate B:Incubation  C:pH Degradation 
 g/L Days  % 
1 0.3 3 7.5 31.74 
2 0.65 3 7 82.16 
3 0.3 3 6.5 35.87 
4 0.3 4 7 30.14 
5 0.65 2 7.5 48.17 
6 1 3 7.5 37.57 
7 0.65 3 7 85.36 
8 0.65 4 7.5 75.73 
9 0.65 2 6.5 73.88 
10 0.65 3 7 93.36 
11 0.3 2 7 38.63 
12 0.65 4 6.5 81.67 
13 1 3 6.5 58.73 
14 1 4 7 48.09 
15 1 2 7 49.28 
16 0.65 3 7 91.32 
17 0.65 3 7 88.68 
 

The trials were conducted thrice, and the average values are 
presented below. The data were analyzed using the Design Expert 
11.0 software from Stat-Ease, Inc (trial version). The analysis 
included the use of ANOVA to determine the significant factors 
among the variables.  
 
Statistical Analysis 
The values are shown as the mean ± standard deviation, with each 
experiment being repeated three times. Group comparisons were 
conducted using either a one-way analysis of variance (ANOVA) 
followed by post hoc analysis using Tukey's test, or a Student's t-
test. A p-value less than 0.05 was deemed to be statistically 
significant. 
 
RESULTS 
 
A Box-Behnken experimental design was used to study the 
impact of three parameters on the percentage bacterial 
biodegradation of glyphosate. The factors included the 
incubation duration (measured in days), glyphosate concentration 
(measured in grams per liter), and pH. Each component was 
tested at three distinct levels: low, medium, and high. The 
conducted experimental runs formed the basis for a sequence of 
tests that were performed. The Design-Expert application was 
utilized to evaluate mathematical models, such as linear, two-
factor interaction, and quadratic, to assess their capacity to 
accurately fit the data.  
 
 
 
 
 
 
 
 
 

The objective was to see if there was a link between the different 
components and the responses. Alternatively, it is recommended 
that BB be expressed using a quadratic equation, which 
incorporates squared terms, products of two components, linear 
terms, and an intercept [30], and this will be used in this study. 
The design scheme of variables with their corresponding actual 
values is depicted in Table 3, together with the experimental and 
predicted values of the response and the residuals. 
 
Table 3.  Design a scheme of variables with experimental and predicted 
values of response and residuals. 
 

Run 
A:Glyphosate 
g/L 

B:Incubation  
Days C:pH 

Degradation 

Residual % 
Predicted 
Value % 

1 0.3 3 7.5 31.74 30.96 0.78 
2 0.65 3 7 82.16 88.18 -6.02 
3 0.3 3 6.5 35.87 36.68 -0.81 
4 0.3 4 7 30.14 35.76 -5.62 
5 0.65 2 7.5 48.17 54.59 -6.42 
6 1 3 7.5 37.57 36.76 0.81 
7 0.65 3 7 85.36 88.18 -2.82 
8 0.65 4 7.5 75.73 70.89 4.83 
9 0.65 2 6.5 73.88 78.71 -4.83 
10 0.65 3 7 93.36 88.18 5.19 
11 0.3 2 7 38.63 32.99 5.64 
12 0.65 4 6.5 81.67 75.25 6.42 
13 1 3 6.5 58.73 59.52 -0.78 
14 1 4 7 48.09 53.73 -5.64 
15 1 2 7 49.28 43.67 5.62 
16 0.65 3 7 91.32 88.18 3.14 
17 0.65 3 7 88.68 88.18 0.51 
 
 

The F-test is employed to ascertain the statistical 
significance of the model. Table 4 presents the outcomes of the 
analysis of variance (ANOVA) and the P-value for a particular 
factor. The results demonstrate that the statistical model is very 
significant, as indicated by the F value of 18.77 and a low P-value 
of 0.004. The lack of fit p-value did not reach statistical 
significance, suggesting that the model fits well. All components 
in the model have statistical significance. The calculation of the 
correlation coefficient (R2: 0.9602, close to 1) and the adjusted 
correlation coefficient (Adj R2: 0.9091), as shown in Table 4, 
validates the model's reliability. The sum of these two 
coefficients indicates that the model accounts for 90 percent of 
the total variation in the response data. The Predicted R2 and the 
Adjusted R2 exhibited a high level of concordance, with a 
discrepancy of less than 0.2 between them.  

 
Adeq Precision, scientifically speaking, is the measure of 

the signal-to-noise ratio in an experiment. It is more desirable to 
have a ratio that exceeds 4. An adequate signal was acquired with 
a value of 10.7107. By employing this framework, individuals 
may easily navigate the design area. The Lack of Fit p-value 
greater than 0.05 indicates that it lacks statistical significance 
compared to the pure error. A small lack of fit is deemed 
desirable since it indicates that the model is correct. As the 
outcome, the anticipated increase can be derived based on the 
coded factors outlined in Table 5 and the calculation involving 
the actual components. The glyphosate concentration was shown 
to be the most influential factor in degradation, as indicated by 
the F-values. The pH also had a significant effect, but the 
incubation period did not show significance based on the p-value. 
This is also reflected in the results in Table 5, in the final 
equation represented in terms of coded and actual factors. 
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Table 4. ANOVA analysis of the fitted Box-Behnken design. 
 
Source Sum of 

Squares df Mean 
Square F-value p-value  

Model 8197.20 9 910.80 18.77 0.0004 significant 
A-Glyphosate 410.34 1 410.34 8.46 0.0227  

B-Incubation 82.37 1 82.37 1.70 0.2338  

C-pH 405.36 1 405.36 8.35 0.0233  

AB 13.28 1 13.28 0.2737 0.6170  

AC 72.51 1 72.51 1.49 0.2611  

BC 97.73 1 97.73 2.01 0.1988  

A² 6004.32 1 6004.32 123.75 < 0.0001  

B² 331.98 1 331.98 6.84 0.0346  

C² 374.92 1 374.92 7.73 0.0273  

Residual 339.65 7 48.52    

Lack of Fit 258.41 3 86.14 4.24 0.0983 not significant 
Pure Error 81.24 4 20.31    

Cor Total 8536.85 16     

Std. Dev. 6.97  R² 0.9602 
Mean 61.79  Adjusted R² 0.9091 
C.V. % 11.27  Predicted R² 0.5008 

   Adeq Precision 10.710
7 

 
Table 5. Final equation in terms of coded and actual factors. 

 
Coded 

biodegradation 
equation 

= 
Actual 

Biodegradation 
equation 

= 

88.18  -1787.71  
7.16 A 575.90 Glyphosate 
3.21 B -16.10 Incubation 
-7.12 C 500.35 pH 
1.82 AB 5.21 Glyphosate * Incubation 
-4.26 AC -24.33 Glyphosate * pH 
4.94 BC 9.89 Incubation  * pH 

-37.76 A² -308.27 Glyphosate² 
-8.88 B² -8.88 Incubation ² 
-9.44 C² -37.75 pH² 

 
The factors evaluated using the OFAT (One-Factor-At-A-

Time) methodology were crucial for understanding the growth of 
this bacterium on glyphosate. Detailed findings from this 
investigation are given in a separate article. The trials employed 
glyphosate concentrations that were comfortably within the 
reported tolerance range for the majority of glyphosate-degrading 
bacteria. Microorganisms are often harmed by concentrations of 
glyphosate that are higher than 1000 mg/L. This is mainly 
because glyphosate can disrupt the shikimate pathway, which is 
responsible for its toxic effects [16–19]. Extended incubation 
periods promote enhanced biodegradation, with the most 
favorable growth of glyphosate-degrading bacteria often 
occurring between two and five days of incubation. Therefore, it 
is crucial to precisely anticipate the consequences of incubation 
period. The majority of microorganisms that break down 
glyphosate thrive in settings that are close to neutral, which 
supports the results of our investigation and confirms the trends 
documented in existing literature. 
 

The perturbation plots (Fig. 1) provide a way to interpret the 
influence of the independent factors on the responses. These plots 
demonstrate that a factor with a steep slope or curvature suggests 
that the reaction is very responsive to changes in that component, 
whereas a relatively flat line indicates that the response is not 
significantly affected by alterations in that specific factor. The 
plot clearly shows that component A (glyphosate concentration) 

has the most pronounced curvature. The perturbation plot also 
reveals the existence of two-factor interactions, indicating 
synergistic effects. Furthermore, all quadratic effects, denoted as 
(A²), (B²), and (C²), demonstrated significant adverse synergistic 
effects with a p-value of less than 0.0001. The negative 
contributions observed suggest that an increase in these 
parameters has a harmful impact on the response. This outcome 
is not surprising, considering that the pH effect is extremely 
specific within a limited range, and larger concentrations of 
glyphosate severely hinder biodegradation. 
 

 
 
Fig. 1. Perturbation plot of operational parameters. 
 

To verify the expectation of normality, a half-
normal probability plot of the residuals (Fig. 2) was created and
 examined. The values for the internally 
studentized residual were found within a range of 2 and were 
evenly distributed along a straight line, 
suggesting that there was no requirement for a transformation of
 the response variable. The graph depicting the comparison 
between the experimental data and the anticipated values of the 
model demonstrates a strong correspondence, so providing 
additional evidence of the model's precision. 
 

 
 
Fig. 2.  Half-normal probability plot of the residuals. 
 

Fig. 3 displays the Box-Cox plot, which is crucial for 
determining the suitable power law transformation according to 
the lambda (λ) value. Given that the 95% confidence interval 
encompasses the value of 1, which is consistent with the model's 
intended structure, it is not recommended to modify the observed 
response purely for the purpose of improving the model's fit. [31] 
suggest the following transformations: λ = 0 (natural log), λ = 1 
(no transformation), λ = 0.5 (square root), λ = -1 (inverse) and λ 
= -0.5 (inverse square root).  
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The diagnostic graph illustrating the relationship between 

predicted and actual values for the Box-Behnken optimization 
studies (Fig. 4) is a crucial tool for validating the model's 
predictive accuracy, as it provides a visual representation of how 
well the model's predictions align with the experimental results, 
where the x-axis typically represents the predicted values 
generated by the model and the y-axis denotes the actual values 
obtained from the experiments, ideally showing data points that 
closely follow a 45-degree line, indicating a perfect correlation 
between predicted and actual values, which suggests that the 
model has a high degree of accurateness in predicting outcomes 
based on the input variables.  

 
Several key points can be derived from analyzing this 

diagnostic graph, including the strength of the correlation 
indicated by the proximity of the data points to the 45-degree line, 
which signifies a strong predictive capability of the model, while 
significant deviations suggest areas where the model may not be 
as accurate, serving as a validation tool that confirms whether the 
model's predictions are reliable, and if the data points 
consistently deviate from the 45-degree line, it may indicate 
issues with the model such as incorrect assumptions, overlooked 
variables, or the need for additional data points, while also 
helping to identify outliers—data points that significantly deviate 
from the expected trend, which may indicate experimental errors, 
data recording issues, or unique conditions not accounted for by 
the model, and addressing these outliers can improve the model's 
accuracy, and by examining areas where the predicted values do 
not match the actual values, researchers can refine their model by 
adjusting parameters, incorporating additional variables, or using 
more sophisticated modeling techniques to capture the 
underlying complexities of the data, thus making the diagnostic 
graph comparing predicted and actual values for the Box-
Behnken optimization studies a vital tool for evaluating and 
enhancing the model's accuracy, helping to validate the model, 
identify potential outliers, and guide further refinements to 
ensure robust and reliable predictive capabilities [31]. 
 

The leverage versus run number plot (Fig. 5), with 
degradation values color-coded for each point, used to assess the 
influence of individual data points on the overall model in a Box-
Behnken optimization study, and the key observations include 
leverage values ranging from approximately 0.05 to just under 
0.10, indicating that no single data point has an excessively high 
influence on the model, as typically leverage values close to 1 
would be a concern due to high influence, and the x-axis 
represents the run number, ranging from 1 to 17, with the 
distribution of leverage values appearing fairly uniform across 
different runs, suggesting consistent influence from each 
experimental run, while the color coding represents the 
degradation values, with a range from blue for lower degradation 
values to red for higher degradation values, and the points are 
spread across the color spectrum, indicating a variety of 
degradation values were observed throughout the runs, and since 
all leverage values are well below the critical value of 1, this 
indicates no single run unduly influences the model, suggesting 
good model stability and robustness, and the spread of 
degradation values and uniform leverage distribution across runs 
indicate that the experimental design effectively captures a broad 
range of conditions without any outlier runs disproportionately 
affecting the model parameters. 

 
  
 
 
 

 
Thus the leverage versus run number plot demonstrates that 

the model is stable and reliable, with no single data point exerting 
undue influence, and the degradation values are well-distributed 
across the runs, further supporting the robustness of the 
experimental design, suggesting that the model's predictions are 
likely to be accurate and not overly sensitive to individual 
experimental runs [31]. The Cook's distance plot, depicted in Fig. 
6, aids in evaluating the influence of individual data points on the 
model. Cook's distance values that are higher suggest 
observations that have a greater influence, and these values are 
always positive. A given observation is deemed significant if its 
Cook's D value exceeds three times the mean of the dataset [31]. 
The findings show that there are no outliers, as all Cook's 
distances fall within the range of 1 (Fig. 6). Furthermore, the 
residuals vs. run plot (Fig. 7) indicates the absence of serial 
correlation, implying that the data characteristics are random. 
This study affirms the accuracy of the experimental data, 
strengthening the model's resilience and dependability . 
 

 
 
Fig. 3. Diagnostic's plot in the form of Box-Cox plot. 
 
 

 
 
Fig. 4. Graph representing diagnostic data for the Box-Behnken 
optimization studies showing predicted values compared to actual values. 
 
 

Lambda

Ln
(R

es
id

ua
lS

S)

Box-Cox Plot for Power Transforms

5.5

6

6.5

7

7.5

-3 -2 -1 0 1 2 3

6.2937

Degradation

Current Lambda = 1

Recommended transform:
None

Actual

Pr
ed

ic
te

d

Predicted vs. Actual

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

Degradation

Color points by value of
Degradation:
30.1437 93.3647

https://doi.org/10.54987/xxx
https://doi.org/10.54987/xxx


BESSM, 2023, Vol 7, No 2, 40-48 
https://doi.org/10.54987/bessm.v7i2.916 

 

- 45 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

  
Fig. 5. For the Box-Behnken optimization experiments, the diagnostic is 
presented as a plot of leverage versus runs. 
 

 
 
Fig. 6. Visual representation of the diagnostic data for the Box-Behnken 
optimization studies as a function of runs and Cook's distance. 
 

 
 
Fig. 7. Visual representation of diagnostic data for Box-Behnken 
optimization studies as a function of runs and residuals. 
 
Interactive variable effect visualization using contour plots  
To further understand how the parameters interacted with the 
response variables, we developed second-order equations and 
three-dimensional response surface plots. Each graph displays 
the reaction as a function of two independent variables within the 
ranges of those variables, with all other parameters held constant. 
Interaction effects between the variables were shown by the 
contour plot shapes. Plots that are deformed or elliptical suggest 
that the interactions between variables are significant, while plots 
that are circular show that the interactions are minor [33. The 

following sections only include the significant interactions for 
each answer variable.  With the pH maintained at 7.0, adjusting 
the incubation period and glyphosate concentration factors 
produced an elliptical profile, suggesting a synergistic interaction 
(Fig. 8a). The studied region, spanning from 0.54 to 0.82 g/L in 
predicted glyphosate concentrations and 0.67 to 4 days in 
predicted incubation periods, had the highest response rate of 
90.097% degradation (95% confidence interval from 82.856 to 
97.337). The response surface model's elliptical 3D wired frame 
and contour plot show that the separate factors interacted with 
one another [31,32]. There was no statistically significant 
difference (p>0.05) inside this bordering region (Fig. 8b) since 
the 95% confidence interval of the maximum responses 
overlapped [33].  
 

 
(a) 
 

 
(b) 
 
Fig. 8. The 2D- (b) and 3D- (c) contour plots show the ideal zone, while 
the 3D response surface plots show the relationship between the 
incubation factor and glyphosate concentration (a).  
 

An elliptical profile indicating a relationship of synergistic 
interaction was observed when the glyphosate concentration was 
held at 0.65 g/L and the incubation period and pH were varied. 
The highest response, as previously observed, occurred at the 
predicted pH range of 6.5 to 7.25 and the longest period of 4 days 
(Fig. 9a). The 95% confidence interval of the maximum 
responses overlapped inside this bordering region (Fig. 9b), 
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which was considered to be statistically insignificant (p>0.05). 
[33]. 
 

 
(a) 
 

 
(b) 
 
 
Fig. 9. The 2D- (b) and 3D- (c) contour plots show the ideal region, and 
the 3D response surface plots show the relationship between the 
incubation period (a) and the factor pH.  
 

During the third day of incubation, changing the pH and 
glyphosate concentration factors resulted in a spherical profile 
showing significant interaction. The best response was observed 
at pH values between 6.35 and 7.25 and predicted glyphosate 
concentrations of 0.54 and 0.84 g/L (Fig. 10a). It seemed that the 
degradation was severely hindered at high glyphosate 
concentrations, and the perturbation plot corroborated this 
observation by showing that the degradation was unaffected by 
changes in pH from 6.5 to 7.5. There was no statistically 
significant difference (p>0.05) within this bordering region (Fig. 
10b) since the 95% confidence interval of the maximum 
responses overlapped [33]. 
 

 
(a) 

 
(b) 
 
 
Fig. 10. The 3D response surface charts show the relationship between 
pH and the glyphosate factor (a), as well as the 2D- (b) and 3D- (c) 
contour plots that represent the ideal region with a 95% confidence 
interval.  
 
Verification of BB experimental design of RSM for bacterial 
biodegradation of glyphosate 
The Box-Behnken experimental design was found to be a 
successful tool for assessing the influence of incubation length, 
glyphosate concentration, and pH on the biodegradation of 
glyphosate by bacteria. This study determined that the pH and 
concentration of glyphosate are the primary factors that have a 
substantial impact on the process of biodegradation. Although the 
incubation duration has been thoroughly investigated, it did not 
demonstrate a statistically significant influence on the rates of 
biodegradation. The contour and response surface plots 
demonstrated notable interactions among variables, specifically 
between pH and glyphosate concentration, as well as between 
incubation period and glyphosate concentration. These 
interactions played a vital role in comprehending the collective 
impacts of the factors on glyphosate degradation. The model's 
predictions on the ideal conditions for achieving the highest level 
of biodegradation were confirmed by experimental validation.  
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The anticipated maximum biodegradation was found to be 
90.097%, whereas the actual observed biodegradation was 
92.505% (Table 6). The strong correlation between the predicted 
and experimental results (p>0.05) highlights the reliability of the 
model. The results of this study highlight the efficacy of the Box-
Behnken design in optimizing biodegradation processes. This 
research offers a thorough foundation for future studies focused 
on improving glyphosate degradation by identifying and 
analyzing essential components and their interactions. The work 
described in this study provides a dependable basis for 
environmental scientists and engineers who are addressing 
comparable biodegradation difficulties, thanks to its statistical 
rigor and thorough model validation.  

 
In conclusion, our work aids in the overall objective of 

creating sustainable and effective approaches to reduce 
glyphosate contamination in different ecosystems. In order to 
attain the highest level of biodegradation, the ideal 
circumstances, as projected in Table 7, include a pH of 6.81, a 
glyphosate content of 0.692 g/L, and an incubation duration of 
3.092 days. In contrast, according to the information provided in 
Table 8, the most favorable conditions for the maximum 
glyphosate concentration were determined to be a pH of 6.785, a 
glyphosate concentration of 0.844 g/L, and an incubation 
duration of 3.112 days. A comparison between the findings 
obtained via OFAT (reported in another source) and RSM 
demonstrated that the optimization using RSM resulted in a 
biodegradation rate of 5.779% higher. 
 
Table 6. The Box-Behnken design based parameter suggestions and 
projected responses for each variable to achieve maximum glyphosate 
degradation. 
 

Name Goal Level  
A:Glyphosate  is in range  0.692  
B:Incubation   is in range  3.092  
C:pH  is in range  6.810  
Degradation  maximize    
    
Solution 1 of 1 Predicted 95% CI low 95% CI high 
Degradation 90.097 82.856 97.337 

 
Table 7. Suggested parameter and predicted response for each variable 
for maximum  glyphosate concentration tolerable based on the Box-
Behnken design. 
 

Name Goal Level  
A:Glyphosate  maximize  0.844  
B:Incubation   is in range  3.112  
C:pH  is in range  6.785  
Degradation  maximize    
    
Solution 1 of 1 Predicted 95% CI low 95% CI high 
Degradation 83.003 75.511 90.496 

 
Comparison of optimisation parameters between OFAT and 
RSM  
In comparison, results from OFAT (published elsewhere) and 
RSM were gathered and compared to each other (Table 9). A 
higher response of about 5.779% degradation was achieved 
through RSM optimisation. 
 
Table 9. Comparison of optimum conditions and results obtained 
between OFAT and RSM for optimum % degradation of glyphosate. 
 
 OFAT RSM 

Factors Optimum 
value 

Max 
degradation 
(%) 

Optimum 
value 

Max 
degradation 
(%) 

pH 7.0 86.729 
(83.922 to 
89.536) 

6.81 92.505 
(88.679 to 
96.331) 

Incubation period (d) 3 3.09 
Glyphosate (g/L) 0.5 0.692 
 

Table 8. Verification results between experiments and predicted 
response.  
 

RSM target 
solution 

Desira-
bility 

Predicted % 
degradation 
(95%, C.I.) 

Experimental 
verification 
(95%, C.I.) 

Statistical 
significant 
 

All studied 
factors are within 
range, Maximum 
Degradation as a 
response 
 

0.869 90.097 (82.856 
to 97.337) 

92.505, 
(88.679 to 
96.331) 

No significant  
Difference 
(p>0.05) 

Only glyphosate 
concentration 
maximum. Other 
factors within 
range,  
Maximum 
Degradation as a 
response 

0.844 83.003 (75.511 
to 90.496 

79.725 
(75.552 to 
83.898) 

No significant  
Difference 
(p>0.05) 

 
CONCLUSION 
 
The Box-Behnken experimental design was found to be a 
successful tool for assessing the influence of incubation length, 
glyphosate concentration, and pH on the biodegradation of 
glyphosate by bacteria. The study determined that pH and 
glyphosate concentration are the primary factors that 
substantially impact the biodegradation process. Among these 
factors, glyphosate concentration has the greatest influence, as 
indicated by the perturbation plot, F-ratio, and p-value. Although 
the incubation duration has been thoroughly researched, it did not 
demonstrate a statistically significant influence on the rates of 
biodegradation. The quadratic model employed to assess the 
experimental data yielded a precise fit, as evidenced by a 
substantial R² value of 0.9602 and an adjusted R² of 0.9091, 
elucidating 90% of the variation in the response data. The Adeq 
Precision score of 10.7107 confirmed the model's 
trustworthiness, indicating a satisfactory signal-to-noise ratio. 
The contour and response surface plots showed notable 
interactions among the variables, specifically between pH and 
glyphosate concentration and between the incubation period and 
glyphosate concentration. These interactions played a vital role 
in comprehending the collective impact of the variables on 
glyphosate degradation. The model's predictions on the ideal 
conditions for achieving the highest level of biodegradation were 
confirmed by experimental validation. The model predicted a 
maximum biodegradation rate of 90.097%, whereas the actual 
observed biodegradation rate was 92.505%. The strong 
concordance between projected and empirical values (p>0.05) 
highlights the model's resilience. This study's results highlight 
the Box-Behnken design's efficacy in optimizing biodegradation 
processes. This research offers a thorough foundation for future 
studies focused on improving glyphosate degradation by 
identifying and analyzing essential components and their 
interactions. The meticulous statistical analysis and thorough 
model validation given in this study provide a dependable basis 
for environmental scientists and engineers engaged in 
comparable biodegradation tasks. In conclusion, our work aids in 
the overall objective of creating sustainable and effective 
techniques to reduce glyphosate contamination in different 
ecosystems. 
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