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INTRODUCTION 
 
The textile sector contributes positively to global economic 
development. China leads as the primary exporter of various 
textile goods, with the European Union, India, and the USA 
following in that order. However, an issue that plagues textile 
factories is the release of undesirable effluents, particularly non-
degradable dyes, posing a difficult problem [1]. Dye pollutants 
consist of a range of toxic and non-degradable components that 
have the potential to disturb the delicate balance of aquatic 
ecosystems. Such disruption can harm aquatic organisms, 
interfere with the intricate web of food chains, and ultimately 
result in a decline in biodiversity [2,3]. Human health can be 
adversely affected by dye pollutants, which may contain 
carcinogenic and mutagenic compounds. Contact with 
contaminated water may result in health issues, such as skin 
irritation and respiratory problems [4]. A key challenge to the 
current conventional water treatment systems is the rapidly 
increasing amount of hazardous dye wastewater generated by 
various sectors. This is a critical public health concern as well as 
an environmental one. Consequently, a range of physio-
cochemical and biological treatment techniques have been 
studied, with different removal capacities contingent upon the 

limitations of the experiments. [3]. Biological treatment 
techniques for removing toxic dyes are both affordable and 
environmentally friendly, generating minimal sludge. Microbial 
technology is increasingly being recognized as an effective 
alternative for addressing this issue [3,5]. Various types of 
bacteria, with their ease of cultivation and quick growth, are well-
suited for efficiently breaking down dyes. Research on the 
degradation of dyes by bacteria dates back to the 1970s, with 
initial strains like Bacillus subtilis, Aeromonas hydrophila, and 
B. cereus found to have the capability to decolorize azo dyes [5]. 
Congo red, an azo dye, is frequently found as a co-pollutant. 
Approximately one million tons of basic and diazo direct dyes 
are manufactured each year. According to the Ecological and 
Toxicological Association of the Dyestuff Manufacturing 
Industry (ETAD), it is identified as having the most elevated 
toxicity levels [6].  
 

The azo dye contains a chromophoric azo group (N=N), 
which imparts color to the materials. Depending on the quantity 
of azo groups they contain, azo dyes can be categorized as 
monoazo, diazo, or polyazo dyes. It can also be classified into 
various categories, including direct, reactive, dispersion, 
metalized, cationic, and anionic azo dyes, based on their specific 
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 ABSTRACT 
One of the challenges that face the textile industry is the release of effluents that are not wanted, 
most notably colors that do not degrade. This is one of the issues that plague the industry. This is 
a concern since it affects the environment. Bioremediation using dye-degrading bacterium is 
appealing as bacterial metabolism converts hazardous dye to harmless carbon dioxide and water 
as byproducts. In this study, various secondary growth models such as Luong, Yano, Teissier-
Edward, Aiba, Haldane, Monod, Han, and Levenspiel were employed. Following thorough 
statistical analyses such as root-mean-square error (RMSE), adjusted coefficient of determination 
(adjR2), bias factor (BF), and accuracy factor (AF), the Luong model emerged as the most optimal 
choice. The half-saturation constant for maximal growth, maximal growth rate and maximal 
concentration of substrate tolerated and curve parameter that defines the steepness of the growth 
rate decline from the maximum rate symbolized by Ks, qmax and Sm, and n were 76.54 mg/L (95% 
C.I., 50.51 to 102.57), 0.240 per h (95% C.I., 0.219 to 0.270), 1135.37 mg/L (95% C.I., 1041.04 
to 1229.72) and 5.34 (95% C.I., 2.36 to 8.32), respectively.  These novel constants discovered 
during the modeling process could serve as valuable inputs for subsequent modeling pursuits. 
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applications [7]. Acinetobacter baumannii has displayed its 
ability to break down a variety of synthetic dyes and organic 
pollutants in both wastewater and natural environments. Its 
capacity to adapt to diverse environmental conditions and its 
enzymatic machinery for processing complex compounds 
position it as a promising contender for bioremediation 
procedures.  

 
The involvement of this bacterium in dye degradation can 

contribute significantly to reducing water pollution and 
remediating contaminated areas [8,9]. Mathematical modeling 
techniques were utilized, incorporating data from Fig. 2 of Xun-
an Ning, et. al   [10]. Numerous research studies have introduced 
various substrate inhibition kinetics models for the degradation 
of pollutants such as Haldane, Monod, Yano and Koga, Aiba, 
Teissier, Luong and Han, and Levenspiel [11–20]. 
 
MATERIALS AND METHODS 
 
Data acquisition 
The graphical data extracted from Figure 1a in the research 
conducted by Xun-an Ning et al. [10] on Decolorization and 
Biodegradation of the Azo Dye Congo Red by an Isolated 
Acinetobacter baumannii YNWH 226, was analyzed using the 
software tool Webplot digitizer. This software is widely 
acknowledged and embraced within the scientific community 
[21], for its capacity to convert scanned figures into digital data. 
Its precision and reliability have been consistently recognized by 
numerous researchers [22,23].  
 

The data was further analyzed and modeled using Curve 
Expert Professional software (Version 2.6.5) to elucidate the 
scientific insights and trends within the dataset, contributing to 
the robustness of the study's findings. This combination of data 
digitization and advanced software analysis is a common and 
essential practice in modern scientific research, ensuring the 
accuracy and validity of results. 

 
Fitting of the data 
The Marquardt algorithm was employed for nonlinear regression 
to fit various bacterial growth models and this analysis was 
conducted using Curve Expert Professional software (Version 
2.6.5). The algorithm aims to find the most optimal method for 
minimizing the sum of squares between predicted and observed 
values. In this process, the software can be configured manually 
or automatically to determine the initial parameter values, and the 
steepest gradient search between the four data points was utilized 
to estimate the maximum growth rate (μmax). 
 
Statistical analysis 
The statistically significant difference between the models was 
evaluated using various metrics, The following statistical 
functions were utilized to determine the best models; 
 
The RMSE allows number of parameters’ penalty and was 
calculated using Equation 1, where n illustrates the number of 
experimental data, where else p is the number of parameters 
calculated by the model and experimental data and values 
predicted by the model are Obi and Pdi, respectively  [24]. With 
the regression line approaching the data points, the root mean 
square error (RMSE) reduces due to the reduced error in the 
model. More accurate predictions are generated by a model that 
has a lower error rate. Comparable in magnitude to the dependent 
(outcome) variable, the RMSE values span an infinite number of 
positive infinities. The root mean square error (RMSE) can be 
employed to assess the extent of imprecision in a statistical 
model, including regression models. If a value is zero, it signifies 

that the predicted and actual values are an exact match. The 
model exhibits superior data fit and generates more precise 
predictions, as indicated by low RMSE values. In contrast, 
increased levels indicate a greater magnitude of errors and a 
reduced number of precise predictions. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
      (Eqn. 1) 

 
The R2 value, also known as the coefficient of 

determination, was used in linear regression to select the model 
that provided the best fit. On the other hand, in the case of 
nonlinear regression, the R2 does not provide a comparative 
analysis in situations in which the number of parameters in the 
various models varies. In order to get around this obstacle, the 
quality of the nonlinear models was determined by adjusting the 
R2 value. 𝑅𝑅𝑦𝑦2 is the total variance of the y-variable, while RMS 
stands for residual mean square. These two terms are used in the 
adjusted R2 formula (Equations 2 and 3). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑌𝑌2
          (Eqn. 2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

         (Eqn. 3) 
 

One can measure the relative quality of various statistical 
models for a given set of experimental data by using the Akaike 
Information Criterion (AIC). This criterion was developed by 
Akaike. Instead, data sets that have a large number of parameters 
or few values should utilize the AIC that has been corrected, 
which is denoted by the letter AICc [25]. The AICc was 
determined using the equation that is presented below (Equation 
4). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑝𝑝 + 𝑛𝑛1𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑝𝑝 + 1) + 2(𝑝𝑝+1)(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
  (Eqn. 4) 

 
Another statistical measure that is founded on information 

theory is known as the Bayesian Information Criterion (BIC) 
(Equation 5), which can be compared to the AICc. Models with 
the lowest Bayesian information criterion (BIC) are typically 
preferred over those with higher BICs when choosing from a 
finite number of models. It has close ties to the Akaike 
information criteria and is partially based on the likelihood 
function (AIC). This error function imposes a harsher penalty on 
the number of parameters than the AIC does [26]. 
 
𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑝𝑝. ln (𝑛𝑛)      (Eqn. 5) 

 
The Hannan–Quinn information criterion, often known as 

the HQC, is an additional error function approach that is based 
on the information theory (Equation 7). To evaluate how well a 
statistical model fits data, experts use the Hannan-Quinn 
information criterion (HQC). It is a common metric to employ 
when choosing one model over another. In contrast to the LLF, it 
is connected to Akaike's information criterion. The HQC, like the 
AIC, includes a penalty function for the total number of model 
parameters, however it is significantly bigger than the value 
assigned by the AIC because the equation contains the ln ln n 
term [27]; 
 
𝐻𝐻𝐻𝐻𝐴𝐴 = 𝑛𝑛 × 𝑙𝑙𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑝𝑝 × 𝑙𝑙𝑛𝑛(ln 𝑛𝑛)    (Eqn. 7) 

 
Both BF and AF were utilized in an effort to evaluate the 

appropriateness of the models. In order to get a correlation of 1 
between the anticipated value and the observed value, the Bias 
Factor needs to be equal to 1.  
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The Bias Factor and Accuracy Factor originates from 
predictive microbiology under the food microbiology field and 
have found applications in modelling microbial growth that leads 
to food spoilage [28–35]. A fail-safe model is indicated when the 
value of the Bias Factor (Equation 8) is greater than 1, and a fail-
negative model is indicated when the value of the Bias Factor is 
less than 1. When compared to 1, a value of Accuracy that is less 
than 1 indicates a less accurate prediction (Equation 9).  
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴 𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�    (Eqn. 8) 

 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴 𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
�  (Eqn. 9) 

 
Another parameter-penalized model is MPSD. The 

Marquardt’s percent standard deviation (MPSD). This error 
function distribution follows the geometric mean error which 
allows for the penalty to the number of parameters of a model 
(Equation 10). 
 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1     (Eqn. 10) 

 
where  p is the number of parameters, n is the number of 
experimental data, Obi is the experimental data, and Pdi is the 
value predicted by the model. 
 
RESULTS AND DISCUSSION 
 
The strategies for degrading dye pollution involve the innovation 
of sustainable dyes, the advancement of wastewater treatment 
methods, and the dissemination of knowledge about the 
ecological implications of the textile and dye sectors. According 
to the analysis of the bacterial growth model, as depicted in Figs. 
1 to 7. All of the studied models (Table 1) showed good fittings 
except Moser, Monod and Hinshelwood which showed the 
poorest curve fitting. The Luong model emerged as the most 
suitable model, as indicated by its remarkably low values for 
RMSE, AICc, and modified adjR2. Furthermore, the model's AF 
and BF values were close to unity (Table 2).  

 
The half-saturation constant for maximal growth, maximal 

growth rate and maximal concentration of substrate tolerated and 
curve parameter that defines the steepness of the growth rate 
decline from the maximum rate symbolized by Ks, qmax and Sm, 
and n were 76.54 mg/L (95% C.I., 50.51 to 102.57), 0.240 per h 
(95% C.I., 0.219 to 0.270), 1135.37 mg/L (95% C.I., 1041.04 to 
1229.72) and 5.34 (95% C.I., 2.36 to 8.32), respectively. The 
large range for the confidence interval indicates more data points 
are needed, and the fitting was not adequate. The Luong model 
has an advantage compared to the simple Monod or Haldane 
model in the fact that it could predict substrate concentration that 
can completely inhibited growth rate. These parameters are a 
valuable resource for researchers and practitioners seeking to 
apply the simple Monod model. While the Monod model offers 
benefits, it is crucial to note that its relevance might be 
constrained in certain situations. For instance, it assumes a 
consistent specific growth rate, which may not hold in dynamic 
environments.  

 
 
 
 
 
 

In such cases, more intricate models that address factors like 
substrate inhibition or the presence of multiple limiting nutrients 
could be more fitting. The choice of the optimal model depends 
on the unique characteristics of the microbiological system being 
studied and the data at hand.  

 
Table 1. Substrate inhibition mathematical models. 
 
Author 
 

Degradation Rate Author 

Monod  
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴
𝑅𝑅 + 𝐾𝐾𝑠𝑠

 
 
[36] 

Haldane  
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴

𝑅𝑅 + 𝐾𝐾𝑠𝑠 + �𝑅𝑅
2

𝐾𝐾𝑖𝑖
�

 
 
[37] 

Teissier 
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝐴𝐴𝑒𝑒𝑝𝑝 �−

𝑅𝑅
𝐾𝐾𝑖𝑖
�−𝐴𝐴𝑒𝑒𝑝𝑝 �

𝑅𝑅
𝐾𝐾𝑠𝑠
�� 

 

 
[38] 

Aiba 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅

𝐾𝐾𝑠𝑠 + 𝑅𝑅
𝐴𝐴𝑒𝑒𝑝𝑝 �−

𝑅𝑅
𝐾𝐾𝑖𝑖
� 

 

 
[39] 

Yano and Koga 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴

𝑅𝑅 + 𝐾𝐾𝑠𝑠 + �𝑅𝑅
2

𝐾𝐾𝑖𝑖
� �1 + 𝑅𝑅

𝐾𝐾�
  

[40] 

 
Han and 
Levenspiel 
 

 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑅𝑅
𝑅𝑅𝑚𝑚
��

𝑛𝑛

⎝

⎜
⎛ 𝑅𝑅

𝑅𝑅 + 𝐾𝐾𝑠𝑠 �1 − � 𝑅𝑅𝑅𝑅𝑚𝑚
��

𝑚𝑚

⎠

⎟
⎞

 

 

 
[41] 

 
 
Luong 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅

𝑅𝑅 + 𝐾𝐾𝑠𝑠
�1 − �

𝑅𝑅
𝑅𝑅𝑚𝑚
��

𝑛𝑛

 
 
[42] 

Moser 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝐴𝐴𝑛𝑛
 [43] 

Webb 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅 �1 + 𝑅𝑅
𝐾𝐾�

𝑅𝑅 + 𝐾𝐾𝑠𝑠 + 𝑅𝑅2
𝐾𝐾𝑖𝑖

 
[44] 

Hinshelwood 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑅𝑅

𝐾𝐾𝑠𝑠 + 𝑅𝑅
�1 − 𝐾𝐾𝑝𝑝𝑀𝑀� 

[45] 

 
Note: 
qmax maximal specific growth rate 
Ks  half saturation constant 
Ki  inhibition constant 
Sm  maximal concentration of substrate tolerated 
Kp product inhibition constant 
m, n, K curve parameters 
S substrate concentration 
p product concentration 
 
 
Table 2. Statistical analysis of the substrate inhibition models utilized in 
this study. 
 
Model p RMSE adR2 MPSD AICc BIC HQC BF AF 
Luong 4 0.010 0.974 8.27 -108.11 -123.05 -125.85 1.010 1.013 
Yano 4 0.019 0.904 12.06 -90.39 -105.34 -108.13 1.005 1.068 
Tessier-
Edward 3 0.021 0.891 14.98 -93.11 -103.63 -105.73 0.981 1.076 
Aiba 3 0.019 0.903 12.45 -95.44 -105.97 -108.06 0.996 1.074 
Haldane 3 0.021 0.878 13.19 -92.78 -103.31 -105.40 1.002 1.092 
Monod 2 0.031 0.687 19.07 -87.27 -94.39 -95.79 1.038 1.141 
Han and 
Levenspiel  5 0.012 0.961 8.43 -95.75 -116.55 -120.04 1.005 1.026 
Moser 3 0.030 0.742 17.72 -83.47 -94.00 -96.10 1.001 1.135 
Hinshlewood 4 0.034 0.617 20.89 -74.17 -89.12 -91.91 1.038 1.141 
Webb 4 0.022 0.864 13.83 -85.72 -100.67 -103.46 1.002 1.092 
Note: p is the number of parameters 
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Fig. 1. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Luong. 

 
Fig. 2. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Yano. 

 
Fig. 3. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Tessier- Edward. 

 
Fig. 4. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Aiba. 

 
Fig. 5. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Haldane. 

 
Fig. 6.  Growth of Acinetobacter baumannii YNWH 226 modeled using 
Monod. 

 
Fig. 7. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Han-Levenspiel. 

 
Fig. 8. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Moser. 
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Fig. 9. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Webb. 
 
 

 
 
Fig. 10. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Hinshelwood. 
 

In practical terms, these biologically meaningful 
coefficients obtained from the analysis will be highly valuable 
for guiding and enhancing batch and field experiments. They will 
allow researchers and environmental scientists to make accurate 
predictions regarding the growth conditions and needs of 
Acinetobacter baumannii YNWH 226 when employed for the 
remediation of Azo dye Congo red in polluted environments. One 
of the most important parameters in the Luong model is Sm, 
which is the maximal concentration of substrate tolerated. 
Concentrations of substrate or Congo Red inin this case above 
this value would completely inhibited the degradation rate [46]. 
The use of substrate inhibition kinetics model in assessing the 
toxicity of dyes to the growth or degradation rate of 
microorganisms is beginning to be recognized as an important 
exercise. For instance, Anoxybacillus sp. PDR2 was able to 
decolorize different azo dyes in the descending order of Congo 
red > Direct Black 38 > Amaranth > DBG > Methyl Orange with 
Haldane modelling yielding yielded a maximum degradation rate 
or qmax from 3.331 to 13.592 h-1 at dyes concentratiosn from 
149.014 to 340.642 mg/L, respectively [47].  

 
Sonolysis was used as pretreatment for another investigation 

on Congo Red biodegradation, and then a biological treatment 
employing an isolated and acclimatized strain of Bacillus sp. 
acquired from tannery industry effluent was used. Using the 
Haldane model, a qmax, Ks and Ki values of  0.4237 h-1, 177 mg/L 
and 557 mg/L, were obtained [48]. In anotehr study, soil samples 
taken near a textile plant yielded a bacterial strain, YZU1, with 
an impressive capacity to decolorize Reactive Black 5 (RB-5). 
Bacillus sp. YZU1 thrived on 100 mg/L of the dye, achieving 
95% decolorization after 120 h. It was also able to tolerate up to 

500 mg/L of RB-5. A Haldane model fitting yielded a maximum 
degradation rate or qmax of 4.1549 h-1 at 283.6 mg/L of the dye 
[49]. In another study, Alcaligenes faecalis LJ-3 was able to 
completely degraded Acid Scarlet 3R concentration of 1000 
mg/L within 16 h. The effect of the dye on dye degradation rate 
was modelled using the Michaelis-Menten model (Monod) 
giving a qmax of 115.90 h–1 and substrate concentration giving half 
qmax or Ks of 1193.23 mg/L [50]. Many studies only use either the 
Haldane or the Monod model for modelling. There are a few 
studies including this study that utilizes a comprehensive 
modelling approach to benefit the flexibility offered by other 
models. In one such study, several inhibition kinetic models, 
including the Haldane, Monod, Luong, Aiba, Teissier-Edwards, 
Han-Levenspiel, and Yano models, were used to simulate the 
inhibitory effect of azo blue dye on its biodegradation by 
Streptomyces sp. DJP15. Only the Luong model did not 
adequately match the data. The best model was Monod. The 
maximum specific degradation rate qmax was 0.431 h-1 and 
substrate concentration producing half maximal rate, or Ks value 
of 0.0001 (mg/L) [51]. In another study, Crystal violet or gentian 
violet or basic violet 3 (BV) biodegradation by Staphylococcus 
aureus was modelled by a number of secondary models including 
Monod, Haldane, Teissier, Aiba, Yano and Koga, Hans-
Levenspiel, Webb, and the Luong model. According to the result, 
Teissier was the most effective model. The results of these 
experiments suggest that BV is hazardous and reduces the pace 
of decolorization at greater dosages. The maximum BV specific 
biodegradation rate (qmax), half-saturation concentration (KS), 
half inhibition concentration (Ki) were 0.145 h-1, 0.408 mg/L and 
73.205 mg/L, respectively [12]. The use of a comprehensive 
modelling approach can give better curve fitting results than a 
few popular models and should be the normal routine. 
 
CONCLUSION 
 
In conclusion, after conducting a comprehensive analysis that 
included various statistical metrics such as the corrected AICc 
(Akaike Information Criterion), bias factor (BF), adjusted 
coefficient of determination (R2), and root-mean-square error 
(RMSE), it has been determined that the Luong model stands out 
as the most suitable model for describing the degradation rate of 
Acinetobacter baumannii YNWH 226 on the Azo dye Congo red. 
This model's superiority was clearly evident through these 
statistical assessments. From the fitting exercise, we were able to 
extract valuable parameters for the Luong model, which was the 
best model based on statistical tests. These values provide a solid 
foundation for predicting the growth requirements of 
Acinetobacter baumannii YNWH 226 in the context of 
remediating Azo dye Congo red contamination in the 
environment. This knowledge will be instrumental in designing 
effective strategies for addressing environmental contamination 
and further advancing our understanding of microbial processes 
in environmental remediation. 
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