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INTRODUCTION 
 
The designation of Langkawi as a UNESCO geopark in July 2007 
marked a pivotal moment in the island's evolution from a tranquil 
Malaysian gem to a globally recognized tourist haven. This 
acknowledgment by the United Nations Educational, Scientific 
and Cultural Organization has spurred unprecedented growth in 
its coastal development and tourism sectors, notably enhancing 

its appeal to international visitors. A prime example of this 
development is the Kilim Karst Geoforest Park, which has 
transitioned from a quiet rural area to a bustling center of tourist 
activity. The park, with its unique geological formations and 
natural landscapes, epitomizes the potential for geoparks to 
stimulate local economies and cultural appreciation. However, 
this surge in tourism has precipitated significant environmental 
challenges, particularly evident in the increased marine traffic 
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 ABSTRACT 
Near-real-time biomonitoring, especially when utilizing enzyme assays, offers exceptional 
sensitivity to bioavailable pollutants, yielding swift results favorable to immediate action. This 
approach is particularly crucial in the context of mitigating pollution in drinking water systems, 
safeguarding both human and animal health. This study presents an application of a previously 
developed enzyme assay in biomonitoring to detect pollutants, specifically heavy metals, in 
environmental samples from the UNESCO’s Kilim Karst Geoforest Park. Utilizing the ficin dye 
binding assay, developed for mercury (Hg2+), silver (Ag+), and copper (Cu2+) detection at the sub 
ppm level, we demonstrated its effectiveness in identifying low concentrations of these metals in 
marine and brackish waters. The assay provided a sensitive, rapid, and cost-effective monitoring, 
showing negligible inhibition (<10%) over a 6-hour field trial, indicating low pollution levels and 
verified using instrumental analysis. This approach enables the early detection of environmental 
contaminants, facilitating timely interventions and contributing to the protection of ecotourism 
sites by providing evidence-based data for policymaking. The simplicity and visual appeal of the 
enzyme assays also make them excellent educational tools, promoting environmental awareness 
and conservation efforts. Our findings underscore the potential of enzyme assays for widespread 
environmental assessment, aligning local monitoring practices with international standards and 
fostering global collaboration in environmental protection. This study not only contributes to our 
understanding of ecological health in marine and brackish waters but also highlights the 
importance of continuous monitoring to preserve natural habitats. 
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along the Kilim River and its consequent ecological 
ramifications. This paper aims to explore the adverse effects of 
heightened tourist activity, including the erosion of riverbanks 
and the degradation of vital mangrove ecosystems. These 
ecosystems are not only key to preserving biodiversity but also 
serve as critical barriers against coastal erosion. Moreover, the 
presence of heavy metals such as cadmium (Cd), cobalt (Co), 
lead (Pb), and zinc (Zn) in the vicinity of the Kilim Karst 
Geoforest Park raises concerns about the long-term sustainability 
of Langkawi's natural environments. These contaminants, likely 
emanating from boat emissions and construction-related 
disturbances, pose a substantial risk to the ecological equilibrium 
of the area [1–6].  
 

Ecotourism, particularly water-based activities, can 
inadvertently elevate heavy metal concentrations in aquatic 
ecosystems through several interconnected pathways. The 
engines of boats and watercraft used in ecotourism activities 
release exhaust emissions into the water, which may contain 
heavy metals like lead, cadmium, and mercury, stemming from 
fuel combustion; older and poorly maintained vessels are 
particularly culpable in this regard. Additionally, boats often 
employ antifouling paints to prevent barnacle and algae growth; 
these paints release copper and other heavy metals as they 
degrade [7]. Maintenance and repair activities for these 
watercrafts can further introduce heavy metals directly into the 
water through activities such as paint scraping, engine repairs, 
and the replacement of metal parts.  

 
The act of anchoring not only disturbs the sediment, 

resuspending heavy metals contained within but also renders 
them more bioavailable to the aquatic food chains. Infrastructure 
development to accommodate ecotourism, including the 
construction of docks and marinas, disturbs land and sediment, 
potentially releasing trapped heavy metals. The influx of tourists 
leads to increased wastewater and runoff, which may carry heavy 
metals from various sources into aquatic systems. Moreover, the 
use of recreational equipment, such as jet skis and motorboats, 
contributes to erosion and sediment resuspension, thus releasing 
heavy metals previously settled in the sediments. Although 
ecotourism is promoted as a sustainable tourism alternative, it 
necessitates meticulous management to mitigate its 
environmental impacts, including the potential elevation of 
heavy metal levels in water bodies [1,8–10]. 
 

Biomonitoring through enzyme assays emerges as a 
powerful approach in environmental management, providing a 
sensitive, cost-effective, and rapid means for detecting 
pollutants, which greatly benefits both public awareness and 
authoritative action. These assays are adept at identifying low 
concentrations of contaminants like heavy metals and organic 
compounds, facilitating the early implementation of remedial 
measures by authorities. Their cost efficiency and the minimal 
requirement for sophisticated equipment enable widespread and 
frequent environmental assessments, contributing to a detailed 
understanding of ecological health across vast areas [11–14].  

 
The swift processing of enzyme assays ensures timely 

interventions critical for preventing environmental degradation 
and safeguarding public health. Additionally, the simplicity and 
visual appeal of some enzyme assays serve as excellent resources 
for educational initiatives aimed at enhancing environmental 
consciousness among the community, thereby promoting active 
conservation efforts. The accurate data generated from these 
assays support evidence-based policymaking, enabling 
authorities to establish precise pollutant thresholds, assess the 
effectiveness of environmental protections, and make necessary 

adjustments. Moreover, enzyme activity indicators offer early 
warnings of ecological distress, allowing for interventions before 
visible damage occurs, thereby preventing long-term ecological 
damage [15–18]. By aligning local monitoring practices with 
international standards through enzyme assays, authorities can 
foster global collaboration in environmental protection, 
addressing transboundary challenges effectively.  

 
In essence, enzyme assays for biomonitoring equip both the 

public and decision-makers with essential tools and knowledge 
for more effective environmental stewardship and public health 
protection. We have developed several near-real time monitoring 
of pollution especially heavy metals using enzymes from 
microorganisms and plants and utilize these assays to monitor 
various potential and polluted sites in Malaysia including an 
UNESCO site in the river Malacca [19–25].  

 
In this study, we explore the feasibility of using the ficin dye 

binding assay we previously developed for mercury 
biomonitoring in waters from the UNESCO’s Kilim Karst 
Geoforest Park. The ficin inhibitive assay is sensitive to Hg2+, 
Ag+ and Cu2+ with IC50 values of 0.017 mg/L (95% C.I. from 
0.016 to 0.019), 0.028 (95% C.I. from 0.022 to 0.037) and 0.023 
(95% C.I. from 0.020 to 0.027) [24]. 
 
MATERIAL AND METHODS 
 
Preparation of casein and ficin solution 
Casein, procured from Sigma, was precisely measured to 2 grams 
and blended with 100 milliliters of deionized water. To achieve 
a pH level of 8.0, the solution was titrated with 5N solutions of 
NaOH and/or HCl. This mixture was then continuously agitated 
at 60°C throughout the night to ensure thorough dissolution. To 
separate insoluble particles, the solution was strained through 
multiple cheesecloth layers. Subsequent clarification was 
achieved by centrifuging the solution at 10,000×g at a 
temperature of 4°C.  
 

The protein concentration in the resulting clear supernatant 
was determined via the Bradford method, employing crystalline 
BSA from Sigma as a reference. This prepared solution was 
preserved at 4°C for immediate use or frozen at -20°C for long-
term storage. Ficin (from Sigma, E.C. 3.4.22.3, lot number: 
F4165-1ku, derived from crude dried fig tree latex, with an 
activity of 0.5 Units/mg) was dissolved at 4°C in a 20 mM 
sodium phosphate buffer with a pH of 6.77, creating a 10.0 
mg/mL stock solution. From this stock, working solutions of ficin 
(2.0 mg/mL) and casein (10 mg/mL) were freshly prepared on a 
daily basis. 
 
Ficin inhibition studies 
The initiation of the positive control experiment involved 
combining 50 μL of ficin (0.6 mg/mL final concentration) in 20 
mM phosphate buffer at a pH of 6.77, as determined from 
previous experiments conducted according to a Central 
Composite Design (CCD), with 50 μL of mercury solution to 
achieve a final mercury concentration of 0.040 mg/L  [24]. This 
mixture was then incubated for 10 minutes at a temperature of 
30°C. For the control setup, the mercury was substituted with an 
equivalent volume of the 20 mM phosphate buffer at pH 6.77. 
Following this substitution, 50 μL of casein solution was 
introduced to the mixture, resulting in a final concentration of 
2.36 mg/mL, and was thoroughly mixed. An aliquot of 20 μL 
from this mixture was immediately combined with 200 μL of 
Bradford dye-binding reagent. The resulting solution was 
allowed to stand at ambient temperature for 5 minutes, after 
which the absorbance was recorded at 595 nm, marking the initial 
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absorbance reading. After an additional incubation period of 30 
minutes, a second aliquot of 20 μL was extracted, mixed with the 
Bradford dye reagent in the same manner, and the absorbance at 
595 nm was measured following a 5-minute incubation, 
mirroring the initial procedure. 
 
Near real-time field trials 
Every hour for six hours, water samples were collected into acid-
washed HDPE bottles, each supplemented with a few drops of 
1% (v/v) HNO3, from areas adjacent to the Langkawi UNESCO 
Kilim Karst Geoforest Park, specifically at the coordinates 
6°24'17.4"N 99°51'30.7"E (refer to Fig. 1). Initially, these 
samples underwent filtration through a 0.45 µm syringe filter to 
obtain a clear filtrate. Subsequently, 50 microliters of this filtrate 
were assayed for mercury content using the ficin assay at a 
controlled temperature of 30 °C. This temperature control was 
achieved using a portable egg incubator (30 Watt, generic brand) 
powered by a DC12V to AC220V car inverter (ZTE Avid Plus, 
China), ensuring a stable environment of 30 ± 1°C. The necessity 
to power the incubator led to the use of a rented parked car as a 
makeshift electrical source.  
 

The absorbance measurements were conducted with a 
portable mini spectrophotometer (Model M6+, Axiom, 
Germany). Post-assay, the samples were stored in a Coleman® 
ice cooler for preservation until they could be analyzed further in 
the laboratory. For detailed mercury analysis, a Perkin Elmer 
Flow Injection Mercury System (FIMS 400) was employed 
(sourced from Universiti Malaya). Additionally, the 
concentrations of silver and copper within these samples were 
determined using Atomic Emission Spectrometry, specifically on 
a Perkin Elmer ICP OES (Optima 8300, PerkinElmer, Inc., 940 
Winter Street, Waltham, MA, USA). This comprehensive 
approach allowed for the precise quantification of these metals, 
providing critical insights into the water quality near the 
geoforest park. 
 

 
 
Fig. 1. Location of water sampling. (Source Google Earth image). 
 
Data and Statistical Analysis 
The per cent inhibition was calculated according to the following 
formula: 
 
% Inhibition =

 Test activity of sample −  test activity of control x 100
Test activity of control

 

 
 
 
 
 
 
 

RESULTS AND DISCUSSION 
 
Near real-time field trials 
We conducted a near real-time field trial over a six-hour duration, 
with measurements taken at hourly intervals, demonstrated 
minimal inhibition (less than 10%) on the ficin assays utilized. 
Instrumental analyses further revealed that the levels of mercury, 
copper, and silver in the marine/brackish waters were below the 
maximum permissible limits (MPL) set at 0.0005 mg/L, 0.0029 
mg/L, and 0.050 mg/L, respectively. In this context, the threshold 
for significant inhibition was established at 20%.  
 

This minimal inhibition suggests the effectiveness of the 
ficin assay in these environmental conditions. Additionally, other 
near real-time studies employing enzymatic methods in riverine 
environments have reported varying temporal concentrations of 
heavy metals, indicating the potential of these bioassays for 
monitoring fluctuations in environmental contaminant levels 
[19,20,23,26,27] and this is a second study using marine/brackish 
water as samples. Marine and brackish waters, expansive aquatic 
environments, serve as significant reservoirs where heavy metals 
from terrestrial sources quickly undergo dilution. Despite this 
rapid dispersion, elevated concentrations of heavy metals have 
been identified within these regions, predominantly 
accumulating in the sedimentary fractions.  

 
This accumulation pattern underscores the complex 

dynamics of heavy metal distribution, where sediments often act 
as sinks for these pollutants, capturing and retaining them over 
time. The disparity in metal concentrations between water 
columns and sediments highlights the importance of 
comprehensive monitoring across different environmental 
compartments to fully assess the impact of heavy metal pollution 
in aquatic ecosystems [1,2,4,6]. This observation of an absence 
in response to ficin suggests that this area remains comparatively 
pristine. To protect this ecotourism destination, it will be 
essential to implement increased monitoring measures going 
forward in the future.  

 
 

 
 
 
Fig. 2. Near real-time detection of mercury in the Langkawi UNESCO 
Kilim Karst Geoforest Park waters using the ficin inhibitive enzyme 
assay. Error bars represent mean ± standard deviation (n=3). 
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Fig. 3. Near real-time detection of copper in the Langkawi UNESCO 
Kilim Karst Geoforest Park waters using the ficin inhibitive enzyme 
assay. Error bars represent mean ± standard deviation (n=3). 
 
 

 
 
Fig. 4. Near real-time detection of silver in the Langkawi UNESCO 
Kilim Karst Geoforest Park waters using the ficin inhibitive enzyme 
assay. Error bars represent mean ± standard deviation (n=3). 
 

Pollution incidents in Langkawi have escalated, with Sg Ulu 
Melaka being identified as contaminated and categorized as 
Class IV in 2017, as per the Department of Environment's report. 
Variations in the concentrations of heavy metals in aquatic 
environments, including rivers and marine waters, are well-
documented phenomena, highlighting the dynamic nature of 
these pollutants. Sediments, too, exhibit spatial and temporal 
variability in heavy metal content, underscoring the complex 
patterns of environmental contamination [28]. Addressing these 
fluctuations necessitates the development of rapid detection 
methodologies capable of tracking changes in heavy metal 
concentrations, a crucial aspect of environmental forensics. 
 

Traditional methods for detecting heavy metals have 
predominantly relied on batch processing of samples, which must 
be collected and transported to a laboratory for analysis [29–31]. 
This process is time-consuming and may not capture the 
immediate changes in pollutant levels. As a response to these 
limitations, there has been a shift towards real-time or near real-
time monitoring techniques. Innovations in bioassays utilizing 
plants, microorganisms, and enzymatic reactions have emerged 
as promising solutions for immediate environmental assessment  
[32–34]. Enzyme assays, in particular, offer rapid results, with 
the entire process from sampling to detection being achievable in 
under an hour using portable spectrophotometry, making them 
ideal for on-site analysis.  

 
 

The imperative for implementing rapid, near-real-time 
biomonitoring in drinking water systems is multifaceted, 
primarily centered around safeguarding public health. Such 
monitoring enables immediate detection of biological and 
chemical contaminants, acting as a crucial early warning system 
to prevent exposure to harmful substances and mitigate health 
risks. This rapid response aligns with stringent regulatory 
standards, ensuring that water quality remains within safe 
consumption limits and allowing water utilities to take swift 
corrective actions as needed.  

 
Additionally, it enhances operational efficiency by enabling 

real-time adjustments to water treatment processes, thereby 
optimizing resource use and reducing costs associated with over-
treatment or emergency contaminant removal. The transparency 
and immediacy of near-real-time biomonitoring also play a vital 
role in maintaining public confidence in the drinking water 
supply, reassuring consumers about the safety of their water. 
Moreover, it allows for the adaptation to changing environmental 
conditions that could affect water quality, such as weather events 
or industrial accidents, and helps prevent potential infrastructure 
damage caused by contaminants. Overall, rapid biomonitoring is 
essential for continuous assurance of drinking water safety and 
quality, underscoring its significance in public health protection, 
regulatory compliance, and the efficient operation of water 
treatment systems. 
 

Our work has shown the efficacy of enzyme-based assays in 
detecting temporal variations of heavy metal concentrations in 
water bodies situated in industrial regions. Specifically, the use 
of the ficin assay for mercury monitoring in marine environments 
represents an innovative approach and serves as a preliminary 
demonstration of this technique's potential. Future research will 
expand on this groundwork by identifying additional sites for 
sampling and conducting extensive field trials. This direction not 
only reaffirms the viability of enzyme assays for environmental 
monitoring but also sets the stage for broader application and 
development of real-time detection systems that can significantly 
enhance our responsiveness to environmental pollutants. 
 
CONCLUSION 
 
In this study, biomonitoring through enzyme assays, particularly 
the ficin dye binding assay, has proven to be an invaluable tool 
in environmental management for detecting pollutants in the 
UNESCO's Kilim Karst Geoforest Park. Demonstrating 
sensitivity to low concentrations of heavy metals such as 
mercury, silver, and copper, these assays enable the early 
detection of contaminants, facilitating prompt remedial actions. 
The cost-effectiveness and ease of application of enzyme assays 
make them ideal for widespread environmental assessments, 
contributing significantly to our understanding of ecological 
health. Moreover, the negligible inhibition observed in our assays 
suggests that the area under study remains relatively unpolluted, 
highlighting the importance of ongoing monitoring to preserve 
this ecotourism site. The data derived from these assessments not 
only can inform policymaking authorities but also enhance public 
awareness and conservation efforts. This study underscores the 
critical role of enzyme assays in environmental stewardship, 
offering a rapid, accurate, and accessible means to safeguard both 
ecological integrity and public health. 
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