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INTRODUCTION 
 
The textile sector contributes positively to global economic 
development. China leads as the primary exporter of various 
textile goods, with the European Union, India, and the USA 
following in that order. However, an issue that plagues textile 
factories is the release of undesirable effluents, particularly non-
degradable dyes, posing a difficult problem [1]. Dye pollutants 
consist of a range of toxic and non-degradable components that 
have the potential to disturb the delicate balance of aquatic 
ecosystems. Such disruption can harm aquatic organisms, 
interfere with the intricate web of food chains, and ultimately 
result in a decline in biodiversity [2,3]. Human health can be 
adversely affected by dye pollutants, which may contain 

carcinogenic and mutagenic compounds. Contact with 
contaminated water may result in health issues, such as skin 
irritation and respiratory problems [4]. A key challenge to the 
current conventional water treatment systems is the rapidly 
increasing amount of hazardous dye wastewater generated by 
various sectors. This is a critical public health concern as well as 
an environmental one. Consequently, a range of physio-
cochemical and biological treatment techniques have been 
studied, with different removal capacities contingent upon the 
limitations of the experiments. [3].  
 

Biological treatment techniques for removing toxic dyes are 
both affordable and environmentally friendly, generating 
minimal sludge. Microbial technology is increasingly being 
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 ABSTRACT 
One of the challenges that face the textile industry is the release of effluents that are not wanted, 
most notably colors that do not degrade. This is one of the issues that plagues the industry. This 
is a concern since it affects the environment. Bioremediation using dye-degrading bacterium is 
appealing as bacterial metabolism converts hazardous dye to harmless carbon dioxide and water 
as byproducts. In this study, various secondary growth models such as Luong, Yano, Teissier-
Edward, Aiba, Haldane, Monod, Han, and Levenspiel were employed. Following thorough 
statistical analyses such as root-mean-square error (RMSE), adjusted coefficient of determination 
(adjR2), bias factor (BF), and accuracy factor (AF), the Luong model emerged as the most optimal 
choice. the half-saturation constant for maximal growth, maximal growth rate and maximal 
concentration of substrate tolerated and curve parameter that defines the steepness of the growth 
rate decline from the maximum rate symbolized by Ks, µmax and Sm, and n were 8.023 mg/L (95% 
C.I., -153.852 to 169.898), 0.437 per d (95% C.I., -0.121 to 0.995), 551.629 mg/L (95% C.I., 
378.823 to 724.435) and 3.907 (95% C.I., -8.808 to 16.621), respectively.  These novel constants 
discovered during the modeling process could serve as valuable inputs for subsequent modeling 
pursuits. 
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recognized as an effective alternative for addressing this issue 
[3,5]. Various types of bacteria, with their ease of cultivation and 
quick growth, are well-suited for efficiently breaking down dyes. 
Research on the degradation of dyes by bacteria dates back to the 
1970s, with initial strains like Bacillus subtilis, Aeromonas 
hydrophila, and B. cereus found to have the capability to 
decolorize azo dyes [5]. Congo red, an azo dye, is frequently 
found as a co-pollutant. Approximately one million tons of basic 
and diazo direct dyes are manufactured each year. According to 
the Ecological and Toxicological Association of the Dyestuff 
Manufacturing Industry (ETAD), it is identified as having the 
most elevated toxicity levels [6].  
 

The azo dye contains a chromophoric azo group (N=N), 
which imparts color to the materials. Depending on the quantity 
of azo groups they contain, azo dyes can be categorized as 
monoazo, diazo, or polyazo dyes. It can also be classified into 
various categories, including direct, reactive, dispersion, 
metalized, cationic, and anionic azo dyes, based on their specific 
applications [7]. Acinetobacter baumannii has displayed its 
ability to break down a variety of synthetic dyes and organic 
pollutants in both wastewater and natural environments. Its 
capacity to adapt to diverse environmental conditions and its 
enzymatic machinery for processing complex compounds 
position it as a promising contender for bioremediation 
procedures.  

 
The involvement of this bacterium in dye degradation can 

contribute significantly to reducing water pollution and 
remediating contaminated areas [8,9]. Mathematical modeling 
techniques were utilized, incorporating data from Fig. 2 of Xun-
an Ning, et. al   [10]. Numerous research studies have introduced 
various substrate inhibition kinetics models for the degradation 
of pollutants such as Haldane, Monod, Yano and Koga, Aiba, 
Teissier, Luong and Han, and Levenspiel [11–20]. 

 
 

MATERIALS AND METHODS 
 
Data acquisition 
The graphical data extracted from Figure 1a in the research 
conducted by Xun-an Ning et al. [10] on Decolorization and 
Biodegradation of the Azo Dye Congo Red by an Isolated 
Acinetobacter baumannii YNWH 226, was analyzed using the 
software tool Webplot digitizer. This software is widely 
acknowledged and embraced within the scientific community 
[21], for its capacity to convert scanned figures into digital data. 
Its precision and reliability have been consistently recognized by 
numerous researchers [22,23].  
 

The data was further analyzed and modeled using Curve 
Expert Professional software (Version 2.6.5) to elucidate the 
scientific insights and trends within the dataset, contributing to 
the robustness of the study's findings. This combination of data 
digitization and advanced software analysis is a common and 
essential practice in modern scientific research, ensuring the 
accuracy and validity of results. 

 
Fitting of the data 
The Marquardt algorithm was employed for nonlinear regression 
to fit various bacterial growth models (Table 1) and this analysis 
was conducted using Curve Expert Professional software 
(Version 2.6.5). The algorithm aims to find the most optimal 
method for minimizing the sum of squares between predicted and 
observed values. In this process, the software can be configured 
manually or automatically to determine the initial parameter 

values, and the steepest gradient search between the four data 
points was utilized to estimate the maximum growth rate (μmax). 
 
Statistical analysis 
The statistically significant difference between the models was 
evaluated using various metrics, The following statistical 
functions were utilized to determine the best models; 
 

The RMSE allows number of parameters’ penalty and was 
calculated using Equation 1, where n illustrates the number of 
experimental data, where else p is the number of parameters 
calculated by the model and experimental data and values 
predicted by the model are Obi and Pdi, respectively  [24]. With 
the regression line approaching the data points, the root mean 
square error (RMSE) reduces due to the reduced error in the 
model. More accurate predictions are generated by a model that 
has a lower error rate. Comparable in magnitude to the dependent 
(outcome) variable, the RMSE values span an infinite number of 
positive infinities. The root mean square error (RMSE) can be 
employed to assess the extent of imprecision in a statistical 
model, including regression models. If a value is zero, it signifies 
that the predicted and actual values are an exact match. The 
model exhibits superior data fit and generates more precise 
predictions, as indicated by low RMSE values. In contrast, 
increased levels indicate a greater magnitude of errors and a 
reduced number of precise predictions. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
      (Eqn. 1) 

The R2 value, also known as the coefficient of 
determination, was used in linear regression to select the model 
that provided the best fit. On the other hand, in the case of 
nonlinear regression, the R2 does not provide a comparative 
analysis in situations in which the number of parameters in the 
various models varies. In order to get around this obstacle, the 
quality of the nonlinear models was determined by adjusting the 
R2 value. 𝑆𝑆𝑦𝑦2 is the total variance of the y-variable, while RMS 
stands for residual mean square. These two terms are used in the 
adjusted R2 formula (Equations 2 and 3). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑌𝑌2
          (Eqn. 2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

         (Eqn. 3) 
 

One can measure the relative quality of various statistical 
models for a given set of experimental data by using the Akaike 
Information Criterion (AIC). This criterion was developed by 
Akaike. Instead, data sets that have a large number of parameters 
or few values should utilize the AIC that has been corrected, 
which is denoted by the letter AICc [25]. The AICc was 
determined using the equation that is presented below (Equation 
4). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑝𝑝 + 𝑛𝑛1𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑝𝑝 + 1) + 2(𝑝𝑝+1)(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
  (Eqn. 4) 

 
Another statistical measure that is founded on information 

theory is known as the Bayesian Information Criterion (BIC) 
(Equation 5), which can be compared to the AICc. Models with 
the lowest Bayesian information criterion (BIC) are typically 
preferred over those with higher BICs when choosing from a 
finite number of models. It has close ties to the Akaike 
information criteria and is partially based on the likelihood 
function (AIC). This error function imposes a harsher penalty on 
the number of parameters than the AIC does [26]. 
 

https://doi.org/10.54987/xxx
https://doi.org/10.54987/xxx


BESSM, 2023, Vol 7, No 1, 52-57 
https://doi.org/10.54987/bessm.v7i1.903 

 

- 54 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛

+ 𝑝𝑝. ln (𝑛𝑛)      (Eqn. 5) 
 

The Hannan–Quinn information criterion, often known as 
the HQC, is an additional error function approach that is based 
on the information theory (Equation 7). To evaluate how well a 
statistical model fits data, experts use the Hannan-Quinn 
information criterion (HQC). It is a common metric to employ 
when choosing one model over another. In contrast to the LLF, it 
is connected to Akaike's information criterion. The HQC, like the 
AIC, includes a penalty function for the total number of model 
parameters, however it is significantly bigger than the value 
assigned by the AIC because the equation contains the ln ln n 
term [27]; 
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛 × 𝑙𝑙𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑝𝑝 × 𝑙𝑙𝑙𝑙(ln 𝑛𝑛)    (Eqn. 7) 

 
Both BF and AF were utilized in an effort to evaluate the 

appropriateness of the models. In order to get a correlation of 1 
between the anticipated value and the observed value, the Bias 
Factor needs to be equal to 1.  

 
The Bias Factor and Accuracy Factor originates from 

predictive microbiology under the food microbiology field and 
have found applications in modelling microbial growth that leads 
to food spoilage [28–35]. A fail-safe model is indicated when the 
value of the Bias Factor (Equation 8) is greater than 1, and a fail-
negative model is indicated when the value of the Bias Factor is 
less than 1. When compared to 1, a value of Accuracy that is less 
than 1 indicates a less accurate prediction (Equation 9).  
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�    (Eqn. 8) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
�  (Eqn. 9) 

 
Another parameter-penalized model is MPSD. The 

Marquardt’s percent standard deviation (MPSD). This error 
function distribution follows the geometric mean error which 
allows for the penalty to the number of parameters of a model 
(Equation 10). 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1     (Eqn. 10) 

 
where  p is the number of parameters, n is the number of 
experimental data, Obi is the experimental data, and Pdi is the 
value predicted by the model. 
 
RESULTS AND DISCUSSION 
 
The strategies for diminishing dye pollution involve the 
innovation of sustainable dyes, the advancement of wastewater 
treatment methods, and the dissemination of knowledge about the 
ecological implications of the textile and dye sectors. According 
to the analysis of the bacterial growth model, as depicted in Figs. 
1 to 7.  
 

All of the studied models showed good fittings except 
Moser, Monod which has the poorest curve fitting. The Han-
Levenspiel model failed to converge and was omitted from the 
data analysis. The Luong model emerged as the most suitable 
model, as indicated by its remarkably low values for RMSE, 
AICc, and modified adjR2. Furthermore, the model's AF and BF 
values were particularly outstanding (Table 2).  

 
 

 
The half-saturation constant for maximal growth, maximal 

growth rate and maximal concentration of substrate tolerated and 
curve parameter that defines the steepness of the growth rate 
decline from the maximum rate symbolized by Ks, µmax and Sm, 
and n were 8.023 mg/L (95% C.I., -153.852 to 169.898), 0.437 
per d (95% C.I., -0.121 to 0.995), 551.629 mg/L (95% C.I., 
378.823 to 724.435) and 3.907 (95% C.I., -8.808 to 16.621), 
respectively. The large range for the confidence interval indicates 
more data points are needed and the fitting was not adequate. The 
luong model has an advantage compard to the simple Monod or 
Haldane model in the fact that it could predict substrate 
concentration that can completely inhibited growth rate. 
 

These parameters are a valuable resource for researchers 
and practitioners seeking to apply the simple Monod model. 
While the Monod model offers benefits, it is crucial to note that 
its relevance might be constrained in certain situations. For 
instance, it assumes a consistent specific growth rate, which may 
not hold in dynamic environments. In such cases, more intricate 
models that address factors like substrate inhibition or the 
presence of multiple limiting nutrients could be more fitting. The 
choice of the optimal model depends on the unique 
characteristics of the microbiological system being studied and 
the data at hand.  
 
Table 1. Various mathematical models developed for degradation 
kinetics involving substrate inhibition. 
 
Author 
 

Degradation Rate Author 

Monod  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑆𝑆 + 𝐾𝐾𝑠𝑠

 
 
[36] 

Haldane  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
�
 

 
[37] 

Teissier 
µ𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
𝐾𝐾𝑖𝑖
�−𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑆𝑆
𝐾𝐾𝑠𝑠
�� 

 

 
[38] 

Aiba µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝐾𝐾𝑠𝑠 + 𝑆𝑆
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
𝐾𝐾𝑖𝑖
� 

 

 
[39] 

Yano and Koga µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
� �1 + 𝑆𝑆

𝐾𝐾�
  

[40] 

 
Han and 
Levenspiel 
 

 

µ𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

⎝

⎜
⎛ 𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 �1 − � 𝑆𝑆𝑆𝑆𝑚𝑚
��

𝑚𝑚

⎠

⎟
⎞

 

 

 
[41] 

 
 
Luong 

µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠
�1 − �

𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

 
 
[42] 

Moser µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝑠𝑠𝑛𝑛
 [43] 

Webb µ𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �1 + 𝑆𝑆
𝐾𝐾�

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝑆𝑆2
𝐾𝐾𝑖𝑖

 
[44] 

Hinshelwood µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝐾𝐾𝑠𝑠 + 𝑆𝑆
�1 − 𝐾𝐾𝑝𝑝𝑃𝑃� 

[45] 

Note: 
mmax maximal specific growth rate 
Ks  half saturation constant 
Ki  inhibition constant 
Sm  maximal concentration of substrate tolerated 
Kp product inhibition constant 
m, n, K curve parameters 
S substrate concentration 
p product concentration 
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Table 2. Statistical analysis of the various models used in this study. 
 
Model p RMSE adR2 MPSD AICc BIC HQC BF AF 
Luong 4 0.04 0.88 158.11 n.a. -37.39 -39.89 1.004 1.056 
Yano 4 0.07 0.67 29.61 n.a. -31.85 -34.35 1.029 1.122 
Tessier-Edward 3 0.05 0.87 21.62 13.69 -34.93 -36.81 1.029 1.108 
Aiba 3 0.05 0.87 21.61 13.69 -34.93 -36.81 1.029 1.108 
Haldane 3 0.07 0.71 27.58 17.53 -31.09 -32.97 1.055 1.154 
Monod 2 0.13 -0.61 45.68 -4.53 -22.95 -24.20 0.977 1.361 
Han and 
Levenspiel  5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Moser 3 0.16 -1.41 52.75 27.47 -21.15 -23.03 0.977 1.361 
Hinshlewood 4 0.14 -0.99 47.25 n.a. -22.73 -25.23 1.059 1.257 
Webb 4 0.08 0.43 33.78 n.a. -29.30 -31.80 1.055 1.154 
Note: p number of parameters 
 
 
 

 
 
Fig. 1. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Luong. 
 

 
Fig. 2. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Yano. 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 3. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Tessier- Edward. 

 
Fig. 4. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Aiba. 

 
Fig. 5. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Haldane. 
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Fig. 6.  Growth of Acinetobacter baumannii YNWH 226 modeled using 
Monod. 
 

 
Fig. 7. Growth of Acinetobacter baumannii YNWH 226 modeled using 
Han-Levenspiel. 
 

In practical terms, these biologically meaningful 
coefficients obtained from the analysis will be highly valuable 
for guiding and enhancing batch and field experiments. They will 
allow researchers and environmental scientists to make accurate 
predictions regarding the growth conditions and needs of 
Acinetobacter baumannii YNWH 226 when employed for the 
remediation of Azo dye Congo red in polluted environments. The 
use of substrate inhibition kinetics model in assessing the toxicity 
of dyes to the growth or degradation rate of microorganisms is 
beginning to be recognized as an important exercise. For 
instance, Anoxybacillus sp. PDR2 was able to decolorize 
different azo dyes in the descending order of Congo red > Direct 
Black 38 > Amaranth > DBG > Methyl Orange with Haldane 
modelling yielding yielded a maximum degradation rate or qmax 
from 3.331 to 13.592 h-1 at dyes concentratiosn from 149.014 to 
340.642 mg/L, respectively [46].  

 
Sonolysis was used as pretreatment for another investigation 

on Congo Red biodegradation, and then a biological treatment 
employing an isolated and acclimatized strain of Bacillus sp. 
acquired from tannery industry effluent was used. Using the 
Haldane model, a qmax, Ks and Ki values of  0.4237 h-1, 177 mg/L 
and 557 mg/L, were obtained [47]. In anotehr study, soil samples 
taken near a textile plant yielded a bacterial strain, YZU1, with 
an impressive capacity to decolorize Reactive Black 5 (RB-5). 
Bacillus sp. YZU1 thrived on 100 mg/L of the dye, achieving 
95% decolorization after 120 h. It was also able to tolerate up to 
500 mg/L of RB-5. A Haldane model fitting yielded a maximum 

degradation rate or qmax of 4.1549 h-1 at 283.6 mg/L of the dye 
[48]. In another study, Alcaligenes faecalis LJ-3 was able to 
completely degraded Acid Scarlet 3R concentration of 1000 
mg/L within 16 h. The effect of the dye on dye degradation rate 
was modelled using the Michaelis-Menten model (Monod) 
giving a qmax of 115.90 h–1 and substrate concentration giving half 
qmax or Ks of 1193.23 mg/L [49]. 

 
Many studies only use either the Haldane or the Monod 

model for modelling. There are a few studies including this study 
that utilizes a comprehensive modelling approach to benefit the 
fleixibility offered by oteh rmodels. In one such study, Several 
inhibition kinetic models, including the Haldane, Monod, Luong, 
Aiba, Teissier-Edwards, Han-Levenspiel, and Yano models, 
were used to simulate the inhibitory effect of azo blue dye on its 
biodegradation by Streptomyces sp. DJP15. Only the Luong 
model did not adequately match the data, as shown by the results. 
The best model was Monod. The maximum specific degradation 
rate qmax was 0.431 h-1 and substrate concentration producing half 
maximal rate, or Ks value of 0.0001 (mg/L) [50]. In another study, 

 
Crystal violet or gentian violet or basic violet 3 (BV) 

biodegradation by Staphylococcus aureus was modelled by a 
number of secondary models including Monod, Haldane, 
Teissier, Aiba, Yano and Koga, Hans-Levenspiel, Webb, and the 
Luong model. According to the result, Teissier was the most 
effective model. The results of these experiments suggest that BV 
is hazardous and reduces the pace of decolorization at greater 
dosages. The maximum BV specific biodegradation rate (qmax), 
half-saturation concentration (KS), half inhibition concentration 
(Ki) were 0.145 h-1, 0.408 mg/L and 73.205 mg/L, respectively 
[12]. The use of a comprehensive modelling approach can give 
better curve fitting results than a few popular models and should 
be the norm. 
 
CONCLUSION 
 
In conclusion, after conducting a comprehensive analysis that 
included various statistical metrics such as the corrected AICc 
(Akaike Information Criterion), bias factor (BF), adjusted 
coefficient of determination (R2), and root-mean-square error 
(RMSE), it has been determined that the Monod model stands out 
as the most suitable model for describing the growth of 
Acinetobacter baumannii YNWH 226 during the degradation 
process of the Azo dye Congo red. This model's superiority was 
clearly evident through these statistical assessments. From the 
fitting exercise, we were able to extract valuable parameters for 
the Luong model, which was the best model based on statistical 
tests. These values provide a solid foundation for predicting the 
growth requirements of Acinetobacter baumannii YNWH 226 in 
the context of remediating Azo dye Congo red contamination in 
the environment. This knowledge will be instrumental in 
designing effective strategies for addressing environmental 
contamination and further advancing our understanding of 
microbial processes in environmental remediation. 
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