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INTRODUCTION 
 
Synthetic chemicals created by humans, in particular, pose 
significant dangers to human health. Well over 80,000 chemicals 
were produced in the United States for use in industry, and many 
more compounds than that were discharged into the atmosphere 

without first undergoing enough testing to ensure their safety. 
Although it is correct that the toxicity of natural compounds and 
created chemicals cannot be compared, it is noteworthy to note 
that the five substances that are considered to be the most 
hazardous on Earth are all naturally occurring [1]. The phenol 
industrial pollutant is one of the most prevalent potentially 
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 ABSTRACT 
Particularly hazardous among the numerous synthetic chemicals made by mankind is phenol. A 
considerable number of the over 80,000 chemicals manufactured in the United States for 
industrial purposes are phenol and phenolic compounds, which enter the environment without 
undergoing sufficient safety evaluation. The potential utilization of phenol as a carbon source by 
several species of bacteria renders bioremediation of this hazardous substance an auspicious 
prospect. Our research revealed that the growth rate of acclimatized mixed bacterial consortia 
from an anaerobic batch reactor was considerably inhibited when exposed to extremely high 
quantities of phenol. The growth parameter-specific growth rate was determined by employing 
the modified Gompertz primary growth model. In the present investigation, we extend our 
previous work by employing multiple substrate inhibition kinetic models—including Monod, 
Teissier, Haldane,  Yano and Koga, Aiba, Han and Levenspiel, Luong, Moser, Webb, and 
Hinshelwood—to further model the effect of substrate or phenol on the growth rate of the 
bacterium. All cases exhibit significant fits, with the exception of the Luong and Hinshelwood 
models. The Haldane model exhibited a higher degree of correspondence with the growth rate 
data obtained at various concentrations of phenol, as determined by the statistical tests. The 
designated values of the Haldane constants were maximal reduction rate, half saturation constant 
for maximal reduction and half inhibition constant which are symbolized by µmax, Ks and Ki were 
0.157 hr-1 (95% confidence interval 0.072 to  0.231), 32.042 mg/L (95% C.I. 14.603 to 49.480) 
and 234.095 mg/L (95% C.I. 181.83 to 286.17), respectively. The output of curve fitting 
interpolation should not be considered the true value, and the user should be duly informed of 
this as the true µmax should be the point at which the slope's gradient becomes zero; in this 
instance, the value was 0.095 h-1 at 50.1 mg/L phenol.  
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harmful compounds that are a direct result of the process of 
industrialization [2]. Phenol pollution of soils and water bodies 
has increased throughout the years, leading in worry for its 
removal from the environment.[3].  
 

The acute symptoms of phenol poisoning can be caused by 
inhaling phenol or coming into direct contact with it through the 
skin. Phenol is known to be particularly irritating to the eyes, 
skin, and mucous membranes. A fast heartbeat, difficulty 
breathing, loss of coordination and tremor, fainting, and coma are 
some of the indications of intoxications in humans. Acute 
poisoning in humans can manifest itself in a variety of ways, 
including abnormal breathing patterns, trembling and weakening 
of the muscles, loss of balance, seizures, coma, and respiratory 
arrest. It has been observed that rodents, such as rats, mice, and 
rabbits, suffer from high levels of acute toxicity as a result of oral 
exposure to phenol [4–7]. 
 

A lack of energy, progressive weight loss, nausea, vertigo, 
excessive salivation, and a dark urine coloration are some of the 
chronic effects of phenol exposure in humans. In addition, 
impacts on the blood and liver, and also problems in the digestive 
system, have been observed. According to the findings of 
one research, after a subject was exposed to phenol by inhalation 
and skin contact, the subject experienced muscle pain and 
weakness, along with an enlarged liver and increased levels of 
liver enzymes. The use of phenol topically results in irritation and 
necrosis of the dermis. Arrhythmias in the heart have been 
observed in humans who were subjected to extraordinarily high 
amounts of phenol. When animals inhale phenol for extended 
periods of time, it has a toxic effect on their kidneys, central 
nervous system (CNS), liver, and lungs, and it can even affect 
their hearts.  

 
The Reference Dose for phenol was determined to be 0.6 

mg/kg/day after research on rats showed that fetal body weights 
were reduced. The reference dose is an oral exposure assessment 
for the public at large (as well as sensitive subgroups) which is 
anticipated to present no significant risk of adverse noncancerous 
outcomes over the course of a lifetime. This is the case because 
the reference dose is below the level at which cancer can develop. 
It is not an accurate measurement of risk; rather, it is a standard 
by which to judge the results. When exposures are higher than 
the reference dosage, there is a greater possibility that negative 
health outcomes will develop. A lifetime of contact in excess of 
the reference dosage does not necessarily result in the absence of 
detrimental effects on one's health in all cases. The EPA has low 
confidence in the study that was used to derive the reference dose 
because the dose was given via gavage in that study. But 
nevertheless, the data includes several supplementary studies 
(chronic, subchronic and reproductive/developmental), so the 
EPA has medium confidence in the reference dose overall [4,8–
12]. 
 
Workers who were exposed to phenol reported slight increases in 
the likelihood of acquiring certain cancers; nevertheless, a 
connection between their phenol exposure and their higher 
cancer risk could not be established. However, dermal treatment 
of phenol may increase tumor growth and/or be a mild skin 
carcinogen in mice. Oral dosing of phenol did not cause 
malignancies in animals; however, dermal application of phenol 
did. In spite of this, the Environmental Protection Agency has 
classified phenol as "not classifiable as to human 
carcinogenicity" in Group D due to the paucity of knowledge 
regarding its carcinogenic effects in both humans and animals 
[13]. 
 

The biological method is the most popular treatment technology 
for phenol-containing wastewater around the world at the 
moment, and it has garnered a lot of attention as a result. In 
comparison to the physicochemical methods, the biological 
method has several advantages, including a straightforward pre-
treatment process, a low initial investment in equipment, a high 
treatment capacity, the ability to be sustainable, and the absence 
of secondary pollution. Therefore, it is essential for the long-term 
growth of the environmental protection sector to conduct 
research on the methods of bioremediation for phenolic 
wastewater by microorganisms. To this day, a great number of 
bacteria capable of digesting phenol have been found [14–21]. 
 
Without accessibility to quantitative experimental data, it is not 
possible to build biological transformation processes and then 
optimize those processes. Several various mathematical models 
have been proposed in order to explain the metabolic 
characteristics of compounds when those chemicals are exposed 
to either pure cultures of microorganisms or wild populations of 
microorganisms. The relationship between the substrate 
concentration (S) and the specific growth rate (µmax) of a 
microbial colony is an important tool in biotechnology. The 
Monod equation is a typical tool that is used to characterize the 
relationship between growth and the rate of substrate 
consumption [22,23]. When a substrate, on the other hand, acts 
as an inhibitor of its own biodegradation, the original Monod 
model is rendered completely useless. In its place, the 
development of novel constant-carrying derivatives has taken 
place in order to facilitate substrate-related changes. The Haldane 
model is one that is used to represent substrate inhibition of 
growth or degradation rate, and it may be found in a wide variety 
of published works. Even though it has been demonstrated that 
alternative models are more accurate when taking into account a 
large number of substrate-inhibiting compounds all at once, such 
as phenol, this model is still widely employed. To illustrate this 
point, the Haldane model is not the only one currently available 
[24], In addition to the model, there have been numerous models 
that have been shown to be superior such as Luong [25,26] and 
Edward [27]. As a result of this, the Haldane may be rendered 
obsolete in some circumstances as a result of the utilization of the 
more extensive models that are currently available. It is not 
recommended to make haphazard use of the Haldane model 
without first doing exhaustive statistical analysis and attempting 
to fit other models to previously collected data on rate of growth 
or degradation. In this study, we continue the work by further 
modeling the influence of substrate or phenol on the growth rate 
of the bacterium by using different substrate inhibition kinetic 
models.  
 
MATERIALS AND METHODS 
 
Data from Fig 1. from the growth of an acclimatized mixed 
bacterial consortia from an anaerobic batch reactor on phenol  
[28] was processed using the software Webplotdigitizer 2.5 [29]. 
It converts the scanned image into digital form and is used by a 
great number of scholars and is recognized for the accuracy it 
provides [30,31]. The specific maximum growth rate on phenol 
at various concentrations of phenol was obtained using a no lag 
modified logistics model as other primary growth models such as 
no lag modified Gompertz model failed to fit the growth data 
(published elsewhere). The ten models of inhibition kinetics are 
shown in Table 1. 
 
Table 1. Various mathematical models developed for 
degradation kinetics involving substrate inhibition of phenol on 
an acclimatized mixed bacterial consortium from an anaerobic 
batch reactor. 
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Author 
 

Degradation Rate Author 

Monod  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑆𝑆 + 𝐾𝐾𝑠𝑠

 

 
[32] 

Haldane  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
�
 

 
[33] 

Teissier 
µ𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
𝐾𝐾𝑖𝑖
�−𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑆𝑆
𝐾𝐾𝑠𝑠
�� 

 

 
[34] 

Aiba 
µ𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆
𝐾𝐾𝑖𝑖
� 

 

 
[35] 

Yano and Koga µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
� �1 + 𝑆𝑆

𝐾𝐾�
  

[36] 

 
Han and Levenspiel 
 

 

µ𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

⎝

⎜
⎛ 𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 �1 − � 𝑆𝑆𝑆𝑆𝑚𝑚
��

𝑚𝑚

⎠

⎟
⎞

 

 

 
[37] 

 
 
Luong 

µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠
�1 − �

𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

 
 
[38] 

Moser µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝑠𝑠𝑛𝑛
 

[39] 

Webb µ𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �1 + 𝑆𝑆
𝐾𝐾�

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝑆𝑆2
𝐾𝐾𝑖𝑖

 
[40] 

Hinshelwood 
µ𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

�1 − 𝐾𝐾𝑝𝑝𝑃𝑃� 
[41] 

   
Note: 
µmax maximal specific growth rate 
Ks  half saturation constant 
Ki  inhibition constant 
Sm  maximal concentration of substrate tolerated 
Kp product inhibition constant 
m, n, K curve parameters 
S substrate concentration 
p product concentration 
 
 
Fitting of the data 
Fitting of the inhibition curves using various growth models was 
carried out using the CurveExpert Professional software (Version 
1.6) by nonlinear regression utilizing the Marquardt algorithm.  
 
Statistical analysis 
The following statistical functions were utilized to determine the 
best models; 
 
The RMSE allows number of parameters’ penalty and was 
calculated using Equation 1, where n illustrates the number of 
experimental data, where else p is the number of parameters 
calculated by the model and experimental data and values 
predicted by the model are Obi and Pdi, respectively  [42]. With 
the regression line approaching the data points, the root mean 
square error (RMSE) reduces due to the reduced error in the 
model. More accurate predictions are generated by a model that 
has a lower error rate. Comparable in magnitude to the dependent 
(outcome) variable, the RMSE values span an infinite number of 
positive infinities. The root mean square error (RMSE) can be 
employed to assess the extent of imprecision in a statistical 
model, including regression models. If a value is zero, it signifies 
that the predicted and actual values are an exact match. The 
model exhibits superior data fit and generates more precise 
predictions, as indicated by low RMSE values. In contrast, 
increased levels indicate a greater magnitude of errors and a 
reduced number of precise predictions. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
   (Eqn. 1) 

The R2 value, also known as the coefficient of determination, was 
used in linear regression to select the model that provided the best 
fit. On the other hand, in the case of nonlinear regression, the R2 
does not provide a comparative analysis in situations in which the 
number of parameters in the various models varies. In order to 
get around this obstacle, the quality of the nonlinear models was 
determined by adjusting the R2 value. 𝑆𝑆𝑦𝑦2 is the total variance of 
the y-variable, while RMS stands for residual mean square. These 
two terms are used in the adjusted R2 formula (Equations 2 and 
3). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑌𝑌2
       (Eqn. 2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

      (Eqn. 3) 
 
One can measure the relative quality of various statistical models 
for a given set of experimental data by using the Akaike 
Information Criterion (AIC). This criterion was developed by 
Akaike. Instead, data sets that have a large number of parameters 
or few values should utilize the AIC that has been corrected, 
which is denoted by the letter AICc [43]. The AICc was 
determined using the equation that is presented below (Equation 
4). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑝𝑝 + 𝑛𝑛1𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑝𝑝 + 1) + 2(𝑝𝑝+1)(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
   

 (Eqn. 4) 
 
Another statistical measure that is founded on information theory 
is known as the Bayesian Information Criterion (BIC) (Equation 
5), which can be compared to the AICc. Models with the lowest 
Bayesian information criterion (BIC) are typically preferred over 
those with higher BICs when choosing from a finite number of 
models. It has close ties to the Akaike information criteria and is 
partially based on the likelihood function (AIC). This error 
function imposes a harsher penalty on the number of parameters 
than the AIC does [44]. 
 
 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑝𝑝. ln (𝑛𝑛)   (Eqn. 5) 

 
 
The Hannan–Quinn information criterion, often known as the 
HQC, is an additional error function approach that is based on the 
information theory (Equation 7). To evaluate how well a 
statistical model fits data, experts use the Hannan-Quinn 
information criterion (HQC). It is a common metric to employ 
when choosing one model over another. In contrast to the LLF, it 
is connected to Akaike's information criterion. The HQC, like the 
AIC, includes a penalty function for the total number of model 
parameters, however it is significantly bigger than the value 
assigned by the AIC because the equation contains the ln ln n 
term [45]; 
 
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛 × 𝑙𝑙𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑝𝑝 × 𝑙𝑙𝑙𝑙(ln 𝑛𝑛)  (Eqn. 7) 

 
 
Both BF and AF were utilized in an effort to evaluate the 
appropriateness of the models. In order to get a correlation of 1 
between the anticipated value and the observed value, the Bias 
Factor needs to be equal to 1. The Bias Factor and Accuracy 
Factor originates from predictive microbiology under the food 
microbiology field and have found applications in modelling 
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microbial growth that leads to food spoilage [46–53]. A fail-safe 
model is indicated when the value of the Bias Factor (Equation 
8) is greater than 1, and a fail-negative model is indicated when 
the value of the Bias Factor is less than 1. When compared to 1, 
a value of Accuracy that is less than 1 indicates a less accurate 
prediction (Equation 9).  
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�  (Eqn. 8) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
�  (Eqn. 9) 

 
Another parameter-penalized model is MPSD. The Marquardt’s 
percent standard deviation (MPSD). This error function 
distribution follows the geometric mean error which allows for 
the penalty to the number of parameters of a model (Equation 
10). 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1   (Eqn. 10) 

 
where  p is the number of parameters, n is the number of 
experimental data, Obi is the experimental data, and Pdi is the 
value predicted by the model. 
 
RESULTS AND DISCUSSION 
 
In this study, the specific maximum growth rate on phenol (µm) 
was first obtained using the no lag modified logistics model (Fig. 
1). The results of the RMSE, AICc, adjustedR2, F-test, and bias 
and accuracy factor comparisons demonstrate that the Haldane 
model is the most accurate and precise of the kinetic models 
considered (Table 2). The resultant fittings (Figs 2 to 11) 
demonstrate satisfactory fit except for the Monod and Moser 
models. 
 
 
 

 
Fig 1. The growth curves of an acclimatized mixed bacterial 
consortia from an anaerobic batch reactor  on various 
concentrations of phenol as modelled using the no lag modified 
Logistics model. 
 

 
Fig 2.The particular growth data were fitted with respect to 
phenol concentration using the model of Monod. 

 
Fig 3. The particular growth data were fitted with respect to 
phenol concentration using the model of Haldane. 

 
Fig 4. The particular growth data were fitted with respect to 
phenol concentration using the model of Teissier. 
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Fig 5. The particular growth data were fitted with respect to 
phenol concentration using the model of Aiba. 

 
Fig 6. The particular growth data were fitted with respect to 
phenol concentration using the model of Yano and Koga. 

 
Fig 7. The particular growth data were fitted with respect to 
phenol concentration using the model of Han and Levenspiel. 

 
Fig 8. The particular growth data were fitted with respect to 
phenol concentration using the model of Moser. 

 
Fig 9. The particular growth data were fitted with respect to 
phenol concentration using the model of Webb. 
 
 
Table 1. Statistical analysis of the various fitting models. 
 
Model p RMSE adR2 MPSD AICc BIC HQC BF AF 
Luong 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Yano 4 0.006 0.963 26.39 -39.96 -79.65 -82.11 0.95 1.13 
Tessier-
Edward 3 0.009 0.918 245.12 -51.15 -72.24 -74.09 0.68 1.60 
Aiba 3 0.009 0.919 130.50 -51.55 -72.64 -74.49 0.78 1.42 
Haldane 3 0.005 0.971 15.04 -60.31 -81.41 -83.25 1.00 1.11 
Monod 2 0.046 -3.859 70.46 -35.46 -47.30 -48.53 2.08 2.49 
Han and 
Levenspiel  5 0.012 0.800 79.74 27.98 -67.62 -70.70 0.94 1.30 
Moser 3 0.077 -5.696 77.18 -17.53 -38.62 -40.47 2.08 2.49 
Hinshlewood 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Webb 4 0.007 0.946 16.68 -37.12 -76.80 -79.26 1.00 1.11 
 
Note: 
p  no of parameters 
RMSE   Root Mean Square Error 
AdjR2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 
n.a.  not available  
 
The designated values of the Haldane constants were maximal 
reduction rate, half saturation constant for maximal reduction and 
half inhibition constant which are symbolized by µmax, Ks and Ki 
were 0.157 hr-1 (95% confidence interval 0.072 to  0.231), 32.042 
mg/L (95% C.I. 14.603 to 49.480) and 234.095 mg/L (95% C.I. 
181.83 to 286.17), respectively. The output of curve fitting 
interpolation should not be considered the true value, and the user 
should be duly informed of this as the true µmax should be the 
point at which the slope's gradient becomes zero; in this instance, 
the value was 0.095 h-1 at 50.1 mg/L phenol. The equation for the 
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Haldane model using the values obtained from the fitting is as 
follows; 
 

0.157𝑆𝑆

𝑆𝑆 + 32.042 + � 𝑆𝑆2
234.095�

 

 
Models like Luong's, Teissier's, and Hans Levenspiel's have been 
developed to account for the occurrences in which the growth rate 
approaches zero at very high substrate concentrations where the 
earlier Monod model could not be used [54]. Overly high 
concentrations of substrates can have toxic and repressive effects 
on microbes, stunting their growth. Much of the current use of 
the Haldane model for modelling the effect of toxic xenobiotics 
to xenobiotic-degrading bacteria centres predominantly to 
phenol-degrading microorganisms [55–62]. This is followed by 
Teissier [63,64,64–66]. It appears that other models were found 
to be less reported and the reason for this is that in numerous 
cases only the Haldane model was utilized to model the effect of 
phenol on the growth or degradation rate of microorganisms on 
phenol.  
 
In 1930, Haldane presented his model, now known as the 
Haldane model. The model is thought of as a development of the 
Monod model. The model includes a third constant, Ki, to account 
for substrate concentration-dependent inhibition of the specific 
growth rate. The substrate concentration at which the specific 
growth rate is half the maximum growth rate absent inhibition is 
equal to the inhibition constant or Ks. Hazardous substrate may 
slow an organism's specific growth rate at high substrate 
concentrations. The model can deal with both hazardous and non-
hazardous substrates. The Haldane model's strength lies in its 
ability to characterize all stages of the kinetics of growth rate. 
The Haldane model was widely utilized because it well described 
growth rate at both low and high substrate concentration. Before 
the Haldane model becomes in popular use, the classical Monod 
model is the most often utilized model. 
 
Jacques Monod first proposed the Monod model in 1942 [67] to 
explain the correlation between specific growth rate and substrate 
consumption rate in a bioreactor. Although they are quite similar 
in appearance, the Michaelis-Menten equation and the Monod 
equation are based on theory rather than observation. Similar to 
the Michaelis-Menten expression for enzyme kinetics, the 
Monod equation for the specific growth rate can be expressed in 
terms of constants. Methods given for calculating vmax and Km for 
an enzyme reaction can, in theory, also be used to calculate µmax 
and KS. Substrate concentration alone or together with biomass 
concentration can be used to define the model in its various 
versions. Specifically, X is biomass concentration, Ks half 
saturation constant, specific bacterial growth rate, and µmax is the 
maximum bacterial growth rate. There is no change in either the 
maximum growth rate or the half saturation constant of bacteria. 
In the bioreactor, the Monod model presumes that there is only a 
single substrate restricting growth (Monod, 1942). Kong lists 
several restrictions [68] on the usefulness of the Monod model 
[69]. At high substrate concentrations, the first restriction 
becomes apparent. Maximum specific growth rate is not affected 
by substrate concentration at high concentration. The second 
restriction appears when the concentration of the substrate is low. 
Growth at low substrate concentrations is substrate dependent. 
Third, the Monod model is inapplicable when the substrate is 
inhibited [70–72]. Similar to the Michaelis-Menten kinetics 
model, at low substrate concentrations, the growth rate 
approaches a first-order with respect to substrate concentrations 
whilst at elevated substrate concentrations, the growth rate 

approaches a zero-order with respect to substrate concentrations. 
For the Haldane and many substrates inhibition at high 
concentrations of substrate, the downward slope of the growth 
rate indicates a negative order of reaction. In many xenobiotics 
or hazardous compounds bioremediation works, toxic substrates 
that inhibit bacterial growth and consumption of substrates 
means that the Monod models will not be useful and the other 
substrate inhibition models are needed [73–77].  
 
 
CONCLUSION 
 
In this work, we found that an acclimatized mixed bacterial 
consortium from an anaerobic batch reactor 's growth rate was 
significantly impeded at exceedingly high concentrations of 
phenol, and the majority of discriminatory statistical findings 
acquired indicated that the Haldane model more accurately 
represented the growth rate data at various concentrations of 
phenol. This study demonstrated that the popular Haldane model 
is often used due to its ability to model inhibitory effects of 
toxicant, especially phenol to the growth rate of microorganisms. 
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