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INTRODUCTION 
 
Environmental contamination is reaching frightening levels 
worldwide. Energy use and garbage production have both 
increased as a result of urbanization, industrialization, and 
overall economic growth. Greenhouse gas emissions, acid 
deposition, water pollution, improper waste disposal, and other 
forms of environmental degradation are all recognized as threats 
to human health on a global scale and warrant further study from 
a variety of disciplinary and methodological perspectives, 
including those of public health, public policy, environmental 
engineering, and public health promotion and disease prevention 
[1–4]. Early in life, exposure to environmental pollutants can 
cause a wide range of negative health outcomes, including but 
not limited to: infant mortality, perinatal disorders,  respiratory 
disorders, allergies, cancers, cardiovascular disease, elevated 
oxidative stress, endothelial dysfunction, psychological 
disorders, and many others. Exposure to environmental 

particulate matter has been associated in numerous studies to an 
increased risk of disease, organ disruption, cancer, and other 
chronic diseases, as well as an increased chance of mortality [5–
10]. 

 
Glyphosate is a systemic herbicide that is non-selective. It 

is utilized  to control most seasonal and perennial plants. There 
is growing public safety concern over the presence of glyphosate 
metabolites in these goods. However, there is scant data 
supporting the carcinogenicity of glyphosate human exposure, 
despite the fact that studies on animals indicated that high doses 
of the chemical caused harm to organs, reproduction, and the 
nervous system. Glyphosate has been found in water and other 
environmental samples mostly because it is widely used in 
farming. As more and more research shows that glyphosate is 
dangerous to living things, the question of how to stop it from 
building up in the first place (in soils and water supplies) and how 
to get rid of it once it does is gaining attention [11–18]. 
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 ABSTRACT 
Bioremediation of contaminants, including glyphosate, a herbicide, is an economically viable and 
environmentally friendly technique. Glyphosate is the most utilized herbicides for weed 
management. Pollution from glyphosate is dangerous to wildlife and their habitats. Soil 
Pseudomonas sp. strain UMP-KB2 obtained from a paddy field was used as the only source of 
carbon and described for its capacity to degrade glyphosate. The growth of these bacteria was 
measured spectrophotometrically as A600 nm in response to changes in incubation time, g 
inoculum size, glyphosate concentration (carbon source), temperature and pH. The bacterium 
degrades glyphosate optimally at pH 7.0, glyphosate concentration of 0.5 g/L, temperatures of 
between 30 and 35 ºC, and inoculum size 1% (v/v). Growth at 0.5 g/L glyphosate shows a two-
day lag period and nearly 90% degradation after six days of incubation. The isolation of a 
glyphosate-degrading bacterium that utilizes glyphosate as a carbon source will be very useful in 
mineralizing glyphosate in contaminated agriculture soil. 
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It is estimated that annually between 125,000 and 130,000 
metric tons of herbicides are used around the world. Over 18 
countries have outright banned glyphosate from agricultural use. 
Thousands of farmers in Malaysia continue to use this chemical 
without proper safety equipment. Due to the concern about its 
toxicity, glyphosate bioremediation has been recommended as an 
alternative to the physical and chemical methods of glyphosate 
degradation [19–22]. In archaea, bacteria, Apicomplexa, algae, 
fungus, and plants, glyphosate suppresses the 5-enolpyruvyl-
shikimate-3-phosphate (EPSP) synthase that is involved in the 
shikimate pathway. EPSP is an essential precursor for the de 
novo synthesis of aromatic amino acids such as phenylalanine, 
tyrosine, and tryptophan as well as the vitamins folic acid and 
menaquinone. EPSP is produced by the EPSP synthase, which 
transform shikimic acid-3-phosphate (S3P) and the glycolytic 
intermediate phosphoenolpyruvate (PEP) into EPSP [23–26]. As 
bacteria that can utilize glyphosate as a carbon source is rare, the 
aim of this study is to screen for such bacteria from a paddy field 
that has a history on glyphosate applications for decades.   

 
MATERIALS AND METHODS 
 
Chemicals  
All chemicals used in this work were of analytical grade. 
Glyphosate (N-(phosphonomethyl)glycine) was purchased as a 
technical grade chemical (95%, Zhengzhou Delong Chemical 
Co., Ltd . Media preparation was based on the recipe [9] except 
otherwise stated here. All the experiments involving 
microorganisms were done in a class II biosafety cabinet.  
 
Soil sampling 
Soil was sampled from a paddy field in Kepala Batas, Seberang 
Perai, Pulau Pinang, Malaysia in October 2022. Soil was sampled 
5 cm from the topsoil using a sterile spatula and placed in sterile 
polycarbonate container.  
 
Screening of glyphosate-degrading isolate 
Soil sample (1 g) was added to 9 mL of sterile tap water and 
mixed. Then, 0.2 mL aliquot was transferred and streaked on a 
mineral salt agar medium (pH 7.5) with the following 
composition in g/L; 0.5 g of NaCl, 0.5 g of KCl, 2 g of NH4SO4, 
0.2 g of MgSO4.7H2O, 0.01 g of CaCl2, 0.001 g of FeSO4, 0.6 g 
of Na2HPO4, 1.5 g of KH4PO4, 18 g of agar (solidifying agent). A 
stock solution of glyphosate (10 g/L) was prepared in deionized 
water, and the final concentration of glyphosate used as the only 
carbon source was 1 g/L.  Glyphosate maximum solubility in 
deionized water was about 12 g/L. The medium was then 
autoclaved at 121 ºC, 115 kPa for 15 min, and glyphosate was 
added to the medium through filter sterilization (0.2 micron 
filter) at 60 °C. Two distinct colonies formed indicating the 
presence of glyphosate-degrading microorganisms. These  
colonies were restreaked on fresh agar medium. A single colony 
was transferred into 10 mL of glyphosate MS medium in 28 mL-
universal bottles and incubated at room temperature for 3 d on an 
orbital shaker at 150 rpm. The best glyphosate-degrading 
bacterium based on A600 nm measurement was utilized for 
further optimization.  
 
Characterization of glyphosate degradation  
Experiments were carried out using a microplate titer approach. 
The glyphosate-MSM medium above was pipetted into the 
microplate (200 µL) and 20 µL bacteria inoculum was mixed into 
the wells of the microplate.  
 
 

The microplate was then covered and incubated statically 
for 5 days at room temperature. The factors (pH, concentration, 
temperature, heavy metals, inoculum size and aeration) that 
affect the growth of the bacterial isolate during glyphosate 
degradation were characterized based on one factor at a time 
(OFAT).  The characterization of the best isolate include studies 
on the effects of incubation time, glyphosate concentration, 
inoculum size, pH and temperature. 
 
Determination of glyphosate using HPLC 
The method of [27] was utilized with slight modification using 
an isocratic gradient eleution. An Agilent 1200 series equipped 
with an autosampler, and a UV detector was utilized in this study. 
The column was a Zorbax Agilent SAX, 4.6 mm ID x 250 mm (5 
µm) column. The mobile phase consisted of 6.2 mM KH2PO4 in 
4% (v/v MeOH, with the pH adjusted to 2.1 with 85% phosphoric 
acid. The flow rate was 1 mL/min and the detector was set at 195 
nm. 
 
Morphological, physiological and biochemical 
characterization  
The bacterium was biochemically and phenotypically 
characterized using standard morphological and biochemical 
methods according to the Bergey’s Manual of Determinative 
Bacteriology [28]. Interpretation of the results was carried out via 
the ABIS online system [29]. 
 
Statistical analysis  
All experiments were conducted in triplicate. Experiments errors 
were shown as bars of standard deviation. All data were 
statistically analyzed using GraphPad Instat. One-way ANOVA 
(95% confidence interval) was considered as statistical 
significance. 
 
RESULTS AND DISCUSSION 
 
Screening of the Isolates  
The screening yielded two distinct colonies of bacterium able to 
utilize glyphosate as a carbon source. The best isolate based on a 
higher absorbance value at A600 nm was chosen for partial 
identification. 
 
Partial identification of the bacterium 
The bacteria was a Gram-negative, rod-shaped, motile 
microorganism. Culture, morphology, and a battery of 
biochemical analyses all pointed to the same bacterium, which 
allowed for its positive identification (Table 1) to the Bergey’s 
Manual of Determinative Bacteriology [28] and using the ABIS 
online software [29]. The software gave two suggestions for the 
bacterial identity with similar homology (80%) and accuracy 
(84%). They were Pseudomonas putida or P. plecoglossicida. 
This bacterium was tentatively identified as Pseudomonas sp. 
strain UMP-KB2. Numerous bacteria from this genus is known 
for their ability to degrade pesticides including glyphosate 
[26,30–37]. Hence, at this juncture, the assignment to the species 
level cannot be done. More works in the future especially 
molecular identification technique through comparison of the 
16srRNA gene are needed to identify this species further. Other 
glyphosate-degrading bacterium includes Alcaligenes sp. [38], 
Flavobacterium sp. [39], Bacillus megaterium [36], Geobacillus 
caldoxylosilyticus [40], Enterobacter cloacae [41], Rhizobium sp. 
and Agrobacterium sp. [42] and R. aquatilis [43]. 
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Table 1. Biochemical tests. 
 

Motility + Utilization of:  
Hemolysis + L-Arabinose + 
Growth at 4 ºC ‒ Citrate + 
Growth at 41 ºC + Fructose + 
Growth on MacConkey agar ‒ Glucose + 
Arginine dihydrolase (ADH) + meso-Inositol d 
Alkaline phosphatase (PAL) + 2-Ketogluconate + 
Indole production d Mannose + 
Nitrates reduction ‒ Mannitol ‒ 
Lecithinase ‒ Sorbitol ‒ 
Lysine decarboxylase (LDC) ‒ Sucrose + 
Ornithine decarboxylase (ODC) ‒ Trehalose ‒ 
ONPG (beta-galactosidase) ‒ Xylose ‒ 
Esculin hydrolysis ‒   
Gelatin hydrolysis d   
Starch hydrolysis ‒   
Urea hydrolysis +   
Oxidase reaction +   

Note: + positive result, − negative result, d indeterminate result 
 
Characterization of glyphosate degradation  
 
Effect of pH 
The bacterium thrived effectively at pH 7.0. It seems that growth 
was severely stunted at pH levels above 9 and below 5. This 
range, especially around neutral, is ideal for most glyphosate-
degrading bacteria (Fig. 1). 
   

  
Fig 1. Effect of pH on the growth of glyphosate-degrading Pseudomonas 
sp. strain UMP-KB2. Error bars represent mean ± standard deviation 
(n=3).  
   
Effect of glyphosate concentration on glyphosate reduction  
From concentrations of 0.1 to 1 g/L, the impact of carbon source 
on this bacteria's ability to degrade glyphosate was measured. 
Results reveal that at values above 0.5 g/L, growth was 
substantially reduced when glyphosate was the only source of 
carbon (Fig. 2). 
 

 
Fig 2. Effect of glyphosate concentration on glyphosate degradation by 
Pseudomonas sp. strain UMP-KB2. Error bars represent mean ± standard 
deviation (n=3).  
   
Effect of inoculum size on Glyphosate biodegradation  
Different inoculum sizes, from 0.1 to 1 percent (v/v) from an 
initial stock of A600 nm of 1.0, were tested to determine their 
impact on glyphosate reduction. The data reveal that as the size 
of the inoculum was raised, the optimal inoculum also grew (Fig. 
3).  

  
Fig 3. Effect of inoculum sizes (% v/v) on the growth of glyphosate-
degrading Pseudomonas sp. strain UMP-KB2. The error bar represents 
the mean ± standard deviation (n=3).  
  
Effect of initial pH   
The impact on glyphosate breakdown in the pH range of 5.5–8.5 
was measured. After 4 days of incubation, the results demonstrate 
that pH 7.0 is optimal for bacterial growth, with growth 
significantly reduced (p<0.05) at values above the optimal value 
(Fig. 4). 
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Fig 4. Effect of initial pH on glyphosate degradation by Pseudomonas sp. 
strain UMP-KB2. The error bar represents the mean ± standard deviation 
(n=3).  
 
Effect of temperature  
Biodegradation of glyphosate was investigated at temperatures 
between 25 and 50 °C. The results suggest that the optimal 
temperature ranged from 30 to 35 °C, with a statistically 
significant (p<0.05) decrease in growth observed at higher 
temperatures (Fig. 5).  
  

 
Fig 5. Effect of temperature on glyphosate degradation by Pseudomonas 
sp. strain UMP-KB2. The error bar represents the mean ± standard 
deviation (n=3).  
 

 
Fig. 6. Growth profile of Pseudomonas sp. strain UMP-KB2.on 500 mg/L 
glyphosate. Each data point represents the mean ± standard deviation of 
three replicates. 
 

 
Growth of bacterium and degradation of glyphosate 
The growth of this bacterium at 500 mg/L glyphosate shows a lag 
period that ranges from 4 to 8 hr (Fig. 6). Glyphosate 
concentration was decreases concomitant to cellular growth. 
Abiotic degradation of glyphosate was minimal as judged by the 
control. 
 
DISCUSSION  
 
The use of glyphosate-degrading bacteria in the bioremediation 
of contaminated soils has only lately piqued the interest of 
scientists. Because its C-P lyase was entirely inactivated under 
field conditions, the initial attempt to utilize the laboratory strain 
Pseudomonas sp. 4ASW, which can cleave glyphosate with the 
synthesis of sarcosine, was unsuccessful [44]. The capacity of the 
added strains to completely metabolize glyphosate meant that 
harmful intermediates might be avoided. Incubation is the 
practice of keeping a specific set of environmental parameters 
constant in order to promote the growth or development of 
microorganisms or to keep the conditions appropriate for a 
biological reaction. 
 

Like all living things, microorganisms require nutrients to 
maintain their health and viability and to fuel their metabolic 
functions. Their growth potential, as well as their capacity to use 
a low-carbon source, may be inversely proportional. This study 
did not test whether or not glyphosate degradation would proceed 
in the presence of other carbon sources. In the absence of any 
other carbon source, optimal breakdown of glyphosate (a carbon 
source) occurred at a concentration of 1.0 g/L. Both Acetobacter 
sp. and P. fluorescens were shown to grow best at 7500 ppm (7.5 
g/L), despite being able to survive concentrations of glyphosate 
as high as 250,000 ppm (250 g/L) [45]. 
 

Because it has been shown that a high concentration of 
inoculum can hinder the growth of the bacterium and, as a result, 
glyphosate breakdown, it is essential to know the effect that the 
size of the inoculum has on the level of glyphosate reduction that 
can be achieved. You have to use the appropriate quantity of 
bacterial inoculum if you want your bacterial isolate to grow in a 
typical manner. If you don't use enough, the nutrients in the 
medium will be depleted before the bacteria have a chance to 
consume them, and the experiment will fail. On the other hand, a 
high concentration may cause death and growth inhibition due to 
the anticipated low concentration of nutrients in the medium, 
which would lead to inadequate nutrition and, as a result, stunted 
development. This would be the case if the medium had a high 
concentration [46]. 
 

The maintenance of a medium's pH is crucial because it 
affects cell growth and proliferation in bacterial settings. At pH 
values below 5, glyphosate degradation was not maintained, 
probably because acidic conditions are not conducive to bacterial 
development. Bacteria, like other microbes, demand a proper and 
physiological pH in order to survive and carry out their metabolic 
operations, and pH is a measure of the degree to which a medium 
is acidic, neutral, or alkaline. Because the pH scale quantifies 
how acidic, neutral, or alkaline a given medium is [47]. Their 
ability to regulate the pH gradient between their intracellular and 
external environments is crucial to their survival at pH values 
above and below 5.0 [48]. Bacillus cereus CB4 [49] 
demonstrated optimal glyphosate breakdown at pH 6.0 – 7.0, 
whereas Pseudomonas putida favored an environment with a 
higher alkaline concentration., with optimum growth at pH 9.0 
[35].  
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However, there is a lack of published research on 
glyphosate-degrading bacteria that thrive in acidic environments. 
This is because the majority of glyphosate degraders require a pH 
range of neutral to alkaline for the best breakdown rate 
[39,42,50–57] including several glyphosate-degrading 
Pseudomonas spp. [26,30–37] 
 

There have been reports of many bacteria that can 
breakdown glyphosate at a variety of temperatures; nonetheless, 
the optimal temperature range is between 30 ºC and 35 °C. 
Ochrobactrum sp. GDOS [52] and Pseudomonas putida [35] 
have the highest bacterial growth at 30 °C, pointing to a 
significant consumption of glyphosate on the part of these 
microorganisms. It is possible that the high temperature area in 
which this bacterium was isolated is related to the reason why it 
has such a high preferred temperature in our investigation. Most 
of the glyphosate degraders are mesophilic microorganisms and 
the temperature range for optimal growth varies between 25 to 
35 °C  [39,42,50–57] and also including several glyphosate-
degrading Pseudomonas spp. [26,30–37]. Geobacillus 
caldoxylosilyticus [40] is thermophilic glyphosate-degrading 
bacterium which as an optimum temperature at 60 °C. 
 

The isolation of a Pseudomonas-degrading glyphosate is not 
unique to this study as many bacteria of this genus have been 
known to degrade glyphosate. that the bacteria belonging to the 
genus Pseudomonas are the ones that most frequently breakdown 
glyphosate in the laboratory including several glyphosate-
degrading Pseudomonas spp. [26,30–37]. Growth of these 
bacteria on glyphosate is because of their resistant towards the 
inhibition of the 5-enolpyruvylshikimate-3-phosphate synthase 
enzyme (EPSPS) through gene mutation and duplication [25].  

 
The small number of strains that were isolated from the 

medium that included glyphosate as the only source of carbon or 
phosphorus is in keeping with several publications that 
demonstrated a considerable drop in the population of 
microorganisms when glyphosate was introduced to the medium 
culture. This conclusion can be understood by the toxicity of 
artificial medium owing to the mode of action of glyphosate, 
which is to impede the shikimic acid pathway in order to achieve 
its desired effect. Glyphosate renders an organism unable to 
produce necessary aromatic amino acids, which ultimately 
results in cell death. This is due to the fact that the pathway for 
shikimic acid is present in virtually all microorganisms.  
 
CONCLUSION 
 
A bacterium previously isolated for molybdenum reduction has 
been characterized for glyphosate utilization as the sole source of 
carbon and possibly as an electron donor for molybdate 
reduction. The isolate degraded glyphosate optimally at pH 6.0, 
the temperature at 40 ºC, 1.0 g/L glyphosate concentration, and 
100 µL inoculum when incubated for 48 h. This isolate was 
significantly affected by all the tested heavy metals. The 
bacterium prefers glucose as an electron donor for molybdenum 
reduction than glyphosate, even though its utilization is still 
novel. Work is still underway to further optimize the potential of 
this bacterium for future bioremediation.   
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