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INTRODUCTION 
 
Environmental issues are increasing rapidly as thousands of 
various hazardous chemicals are released every day as a result of 
human activities. Demands are widely pursued for safe and 
controllable environmentally pollutant alternatives with reduced 
environmental impact  [1].  Acrylamide (CH2=CHCONH2) is an 
amide group consisting of three-carbon compound with an α, 𝛽𝛽-
unsaturated olefin bond. This compound is used to make 
polymers, particularly polyacrylamide, as a commercial 
conjugated reactive molecule [2–4]. Acrylamide is used as a 
binding, thickening and flocculating agent worldwide in the 
industry. [5,6]. Acrylamide is also used to stop soil erosion and 
in wastewater disposal systems, as pesticide ingredients, 
cosmetics products, sugar processing. The repeated use of 
acrylamide and polymers (polyacrylamide) pollute ground and 
sea [2,3]. Acrylamide is a rising dangerous pollutant. Acrylamide 
enters the body via ingestion, the skin, lungs and digestive tract 
[7]. Human reaction to acrylamide is primarily via its exposure 
to skin impacting the monomer acrylamide and of respiratory 
dust and vapor. Acrylamide is a recognized mammalian 
neurotoxicant, carcinogen and terratogen [5]. Acrylamide exerts 

its toxic effect when it is oxidized to the epoxide glycidamide that 
catalyzed by an enzymatic reaction involving cytochrome P450 
2E1[8]. Previous experiments also shown that acrylamide in 
animal and plant cells and its oxidized type glycidamide also 
induced abnormalities. [9]. Given that acrylamide is harmful to 
human health, it must be eliminated from the atmosphere. 
Previously, several microorganisms such as Pseudomonas sp. 
[10], Pseudomonas stutzeri [11], Pseudonocardia thermophila 
[12], Bacillus cereus [13], the fungi Aspergillus oryzae [14] and 
yeast (KCTC 11960BP) [15].  
 

Lately, many statistical models have been used to describe 
the synthesis of compounds in the natural world which are 
exposed to microbial communities. Monod is one of the most 
often used mathematical equations in defining the use of 
substrates related to growth rate [16]. The restriction of this 
approach is it is not able to cater for substrate inhibition to the 
rate. Due to this, other models such as Haldane or other inhibitory 
models was built on this basis including Aiba, Webb (Edward), 
Teissier Yano and Koga, Hans-Levenspiel and Luong [17,18]. 
Hence, the utilization of considerable models available could 
replace the Haldane in some circumstances and discloses 
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 ABSTRACT 
The bacterium Pseudomonas sp. strain Neni-12 isolated from volcanic soil showed the ability to 
grow on high concentrations of acrylamide. The acrylamide-degrading bacterium grew best in 
the presence of glucose with acrylamide as the sole nitrogen source. The inhibitory effects of 
acrylamide as a substrate for growth of this bacterium on the growth rate was modelled using 
several secondary models such as Haldane, Monod, Moser, Webb, Teissier (Tessier), Han-
Levenspiel, Yano-Koga, Aiba, Luong, Webb and Hinshelwood. The models Luong and Han-
Levenspiel failed to fit the data. The statistical analysis and accuracy of the all six kinetic models 
used indicated that Haldane was the best model with small values for RMSE and AICc, adjusted 
R2 values, F-test and with Bias Factor and Accuracy Factor nearest to unity (1.0). The Haldane’s 
constants: maximal growth rate, half-saturation constant for maximal growth and half-inhibition 
constant symbolized by µmax, Ks, and n were 1.637 h-1 (95% C.I., 1.297 to 1.978), 210.99 mg/L 
(95% C.I., 135.01 to 286.97), 5198 mg/L (95% C.I., 4642 to 5755) and 545.68 (95% C.I., 389.94 
to 701.43), respectively. The model’s parameter obtained in this study will be very useful in 
future scale-up macrocosm studies. 

KEYWORDS 
 
Acrylamide-degrading 
Pseudomonas sp. 
Bioremediation 
Haldane 
Substrate inhibition kinetics 

 

 
BULLETIN OF ENVIRONMENTAL SCIENCE & 

SUSTAINABLE MANAGEMENT 
 

Website: http://journal.hibiscuspublisher.com/index.php/BESSM/index 
 

BESSM VOL 7 NO 1 2023 
Azokeratin 

https://doi.org/10.54987/xxx
https://doi.org/10.54987/xxx
mailto:rusnam_ms@yahoo.com


BESSM, 2023, Vol 7, No 1, 32-37 
https://doi.org/10.54987/bessm.v7i1.900 

 

- 33 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

mechanistic process.  To date, limited statistical tests were used 
to accept the best model in modelling the kinetics of xenobiotics 
biodegradation, and the most commonly used test is the 
coefficient of determination (R2) [19,20]. However, by using this 
coefficient of determination (R2), the number of parameters used 
in the model needs to be adjusted [21–23]. This adjustment can 
be made using an adjusted coefficient of determination (adjR2), 
root mean square error RMSE, Corrected Akaike Information 
Criteria (AICc) and others. In this present study the growth rate 
on acrylamide was studied using various kinetic models. 
 
MATERIALS AND METHODS 
 
Growth and maintenance of acrylamide-degrading 
bacterium 
Pseudomonas sp. strain Neni-12 was isolated from volcanic soil 
[24] and was maintained in minimal salts medium (MSM). The 
bacterium was initially able to grow only at 1000 mg/L, but 
several serial transfer processes under increasing acrylamide 
concentrations allows the bacterium to tolerate nearly 5000 mg/L 
acrylamide (results published elsewhere).  
 

The MSM (pH 7.5) with glucose autoclaved separately is 
composed of (per liter): 6.8 g of KH2PO4 (R & M Chemicals, 
Selangor, Malaysia), 10 g of glucose as the sole carbon source 
(Spectrum Chemicals, Malaysia Sdn. Bhd),  0.005 g of 
FeSO4H2O (R & M Chemicals, Selangor, Malaysia), 0.5 g of 
MgSO47H2O (R & M Chemicals, Selangor, Malaysia), various 
concentrations of acrylamide as the sole nitrogen source  with 1 
mL of the following trace elements (per liter): 0.003 g of 
CoCl26H2O, 0.01 g of Cu(CH3COO)2.H2O 0.03 g of ZnCl2 (R & 
M Chemicals, Selangor, Malaysia); 0.002 g of FeCl26H2O (R & 
M Chemicals, Selangor, Malaysia) and 0.05 g of H3BO3 (JT 
Baker, John Townsend Baker, Phillipsburg, N.J., U.S.A.).  
 

In order to avoid degradation via heating, acrylamide was 
sterilized by passing through a 0.45 µm polytetrafluoroethylene 
(PTFE) syringe filter (. The culture was incubated on a shaking 
incubator (Certomat R, USA) at 15 oC at 150 rpm for 96 h  [25]. 
Growth was monitored as an increase in absorbance at 600 nm 
using appropriate serial dilution of culture periodically sampled 
from the flask. 
 
Growth kinetics on acrylamide 
The bacterial growth kinetics on acrylamide was studied using a 
batch culture of the bacterium supplemented with acrylamide at 
concentrations of up to 5000 mg/L. The modified Gompertz 
model was utilised in the primary inhibition kinetics modelling 
to obtain the growth parameter maximum specific growth rate or 
µm. The equation is as follows; 
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The values obtained from this primary modelling exercise 
(published elsewhere) was then used to model various growth 
kinetics model as follows; 
 
 
 
 
 
 
 
 
 

Table 1. Kinetic models for growth of bacterium on acrylamide. 
 
Author 
 

Degradation Rate Author 

Monod  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑆𝑆 + 𝐾𝐾𝑠𝑠

 

 
[26] 

Haldane  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
�

 

 
[27] 

Teissier 
µ𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
𝐾𝐾𝑖𝑖
�−𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑆𝑆
𝐾𝐾𝑠𝑠
�� 

 

 
[28] 

Aiba 
µ𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆
𝐾𝐾𝑖𝑖
� 

 

 
[29] 

Yano and Koga µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
� �1 + 𝑆𝑆

𝐾𝐾�
  

[30] 

 
Han and Levenspiel 
 

 

µ𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

⎝

⎜
⎛ 𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 �1 − � 𝑆𝑆𝑆𝑆𝑚𝑚
��

𝑚𝑚

⎠

⎟
⎞

 

 

 
[31] 

 
 
Luong 

µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠
�1 − �

𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

 
 
[32] 

Moser µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝑠𝑠𝑛𝑛
 

[33] 

Webb µ𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �1 + 𝑆𝑆
𝐾𝐾�

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝑆𝑆2
𝐾𝐾𝑖𝑖

 
[34] 

Hinshelwood 
µ𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

�1 − 𝐾𝐾𝑝𝑝𝑃𝑃� 
[35] 

   
Note: 
µmax maximal specific growth rate 
Ks  half saturation constant 
Ki  inhibition constant 
Sm  maximal concentration of substrate tolerated 
Kp product inhibition constant 
m, n, K curve parameters 
S substrate concentration 
p product concentration 
 
 
Fitting of the data 
Nonlinear regression was carried out using the CurveExpert 
Professional software (Version 1.6), which utilizes the Marquardt 
algorithm to fit the Gompertz and several inhibition kinetics 
models (Table 1) by nonlinear regression. This algorithm 
reduces the sums of squares of the residuals.  
 
Statistical analysis 
The following statistical functions were utilized to determine the 
best models; 
 
The RMSE allows number of parameters’ penalty and was 
calculated using Equation 1, where n illustrates the number of 
experimental data, where else p is the number of parameters 
calculated by the model and experimental data and values 
predicted by the model are Obi and Pdi, respectively  [36]. With 
the regression line approaching the data points, the root mean 
square error (RMSE) reduces due to the reduced error in the 
model. More accurate predictions are generated by a model that 
has a lower error rate.  
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Comparable in magnitude to the dependent (outcome) 
variable, the RMSE values span an infinite number of positive 
infinities. The root mean square error (RMSE) can be employed 
to assess the extent of imprecision in a statistical model, 
including regression models. If a value is zero, it signifies that 
the predicted and actual values are an exact match. The model 
exhibits superior data fit and generates more precise predictions, 
as indicated by low RMSE values. In contrast, increased levels 
indicate a greater magnitude of errors and a reduced number of 
precise predictions. 
 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
      (Eqn. 1) 

 
The R2 value, also known as the coefficient of 

determination, was used in linear regression to select the model 
that provided the best fit. On the other hand, in the case of 
nonlinear regression, the R2 does not provide a comparative 
analysis in situations in which the number of parameters in the 
various models varies. In order to get around this obstacle, the 
quality of the nonlinear models was determined by adjusting the 
R2 value. 𝑆𝑆𝑦𝑦2 is the total variance of the y-variable, while RMS 
stands for residual mean square. These two terms are used in the 
adjusted R2 formula (Equations 2 and 3). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑒𝑒𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑌𝑌2
          (Eqn. 2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝑒𝑒𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

         (Eqn. 3) 
 

One can measure the relative quality of various statistical 
models for a given set of experimental data by using the Akaike 
Information Criterion (AIC). This criterion was developed by 
Akaike. Instead, data sets that have a large number of parameters 
or few values should utilize the AIC that has been corrected, 
which is denoted by the letter AICc [37]. The AICc was 
determined using the equation that is presented below (Equation 
4). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑒𝑒 + 𝑛𝑛1𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑒𝑒 + 1) + 2(𝑝𝑝+1)(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
  (Eqn. 4) 

 
Another statistical measure that is founded on information 

theory is known as the Bayesian Information Criterion (BIC) 
(Equation 5), which can be compared to the AICc. Models with 
the lowest Bayesian information criterion (BIC) are typically 
preferred over those with higher BICs when choosing from a 
finite number of models. It has close ties to the Akaike 
information criteria and is partially based on the likelihood 
function (AIC). This error function imposes a harsher penalty on 
the number of parameters than the AIC does [38]. 
 
 
𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑒𝑒. ln (𝑛𝑛)      (Eqn. 5) 

 
 

The Hannan–Quinn information criterion, often known as 
the HQC, is an additional error function approach that is based 
on the information theory (Equation 7). To evaluate how well a 
statistical model fits data, experts use the Hannan-Quinn 
information criterion (HQC). It is a common metric to employ 
when choosing one model over another. In contrast to the LLF, it 
is connected to Akaike's information criterion. The HQC, like the 
AIC, includes a penalty function for the total number of model 
parameters, however it is significantly bigger than the value 
assigned by the AIC because the equation contains the ln ln n 
term [39]; 

 
 
𝐻𝐻𝐻𝐻𝐴𝐴 = 𝑛𝑛 × 𝑙𝑙𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑒𝑒 × 𝑙𝑙𝑛𝑛(ln 𝑛𝑛)    (Eqn. 7) 

 
 

Both BF and AF were utilized in an effort to evaluate the 
appropriateness of the models. In order to get a correlation of 1 
between the anticipated value and the observed value, the Bias 
Factor needs to be equal to 1. The Bias Factor and Accuracy 
Factor originates from predictive microbiology under the food 
microbiology field and have found applications in modelling 
microbial growth that leads to food spoilage [40–47]. A fail-safe 
model is indicated when the value of the Bias Factor (Equation 
8) is greater than 1, and a fail-negative model is indicated when 
the value of the Bias Factor is less than 1. When compared to 1, 
a value of Accuracy that is less than 1 indicates a less accurate 
prediction (Equation 9).  
 
𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�    (Eqn. 8) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴 𝑓𝑓𝐵𝐵𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
�  (Eqn. 9) 

 
Another parameter-penalized model is MPSD. The 

Marquardt’s percent standard deviation (MPSD). This error 
function distribution follows the geometric mean error which 
allows for the penalty to the number of parameters of a model 
(Equation 10). 
 

𝑅𝑅𝑃𝑃𝑆𝑆𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1     (Eqn. 10) 

 
where  p is the number of parameters, n is the number of 
experimental data, Obi is the experimental data, and Pdi is the 
value predicted by the model. 
 
 
RESULTS AND DISCUSSION 
 
Growth kinetics 
The growth rate of the acrylamide-degrading bacterium on 
acrylamide as a nitrogen source shows maximal rate at 
acrylamide concentrations ranging from 100 to 1000 mg/L and 
also substrate inhibition to the rate with a decrease in the growth 
rate was observed at acrylamide concentration of 5000 mg/L. 
 

 
 
Fig. 1. Growth rate of Pseudomonas sp. strain Neni-12 on various 
acrylamide concentrations. Error bars indicate mean standard deviation 
(n=3). 
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Modelling was carried out using several other kinetic models 
(Figs. 2-7). The models Luong and Han-Levenspiel failed to fit 
the data. The statistical analysis and accuracy of the all six kinetic 
models used indicated that Haldane was the best model with 
small values for RMSE and AICc, adjusted R2 values, F-test and 
with Bias Factor and Accuracy Factor nearest to unity (1.0) 
(Table 2). The Haldane’s constants; maximal growth rate, half-
saturation constant for maximal growth and half-inhibition 
constant symbolized by µmax, Ks, and n were 1.637 h-1 (95% C.I., 
1.297 to 1.978), 210.99 mg/L (95% C.I., 135.01 to 286.97), 5198 
mg/L (95% C.I., 4642 to 5755) and 545.68 (95% C.I., 389.94 to 
701.43), respectively.  
 

The restrictions of previous models such Haldane, Andrews 
Noack, Web, and Yano, alternative models such as Luong, 
Teissier and Hans-Levenspiel were developed in that certain 
cases in which growth rate at very high substratum concentration 
became zero did not justify the use of these models [48]. To date, 
this is the second time that such a modelling exercise was utilized 
to model growth kinetics on acrylamide. Modelling the bacterial 
growth kinetics on toxicants is an essential part of improving 
successful bioremediation strategies since the obtained 
consistencies can be used to prepare and consider bioremediation 
limitations [18]. In a previous study, an acrylamide-degrading 
yeast shows the Luong model as the best model with the Luong’s 
constants µmax, Ks, Sm, and n (± standard error) were 0.099±0.017 
hr-1, 17.34 ± 5.0 mg/L, 2053.0 ±56.0 mg/L and 0.801±0.202, 
respectively [49].  

 
Similarly, another acrylamide-degrading bacterium isolated 

from Antarctica also exhibited Luong as the best model with the 
half-saturation constant for maximal growth, maximal growth 
rate and maximal concentration of substrate tolerated and curve 
parameter that defines the steepness of the growth rate decline 
from the maximum rate symbolized by Ks, µmax and Sm, and n 
were 18.29 mg/L (95% C.I., -17.51 to 54.10), 0.66 per day (95% 
C.I., 0.51 to 0.82), 5198 mg/L (95% C.I., 4642 to 5755) and 1.37 
(95% C.I., 0.54 to 2.21), respectively [50].  

 
After normalization, the specific maximal growth rate on 

acrylamide of the yeast fares better than the bacterium in this 
study suggesting a more efficient acrylamide degradation in the 
yeast. In contrast to yeast, this bacteria can survive in 
environments with much higher levels of acrylamide. Warning 
the umax value for  acrylamide obtained using curve-fitting 
interpolation is not the genuine value; rather, the true umax should 
be found at the point where the gradient for the slope is zero and 
this value is 0.729 h-1 at 339 mg/L. 
 

 
Fig. 2. Fitting of the specific growth rate of the bacterium on various 
concentrations of acrylamide using the Yano model. 

 

 
 
 
Fig. 3. Fitting of the specific growth rate of the bacterium on various 
concentrations of acrylamide using the Haldane model. 
 

 
 
 
Fig. 4. Fitting of the specific growth rate of the bacterium on various 
concentrations of acrylamide using the Teissier model. 
 
 

 
 
Fig. 5. Fitting of the specific growth rate of the bacterium on various 
concentrations of acrylamide using the Aiba model. 
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Fig. 6. Fitting of the specific growth rate of the bacterium on various 
concentrations of acrylamide using the Monod model. 
 

 
 
Fig. 7. Fitting of the specific growth rate of the bacterium on various 
concentrations of acrylamide using the Moser model. 
 

 
 
Fig. 8. Fitting of the specific growth rate of the bacterium on various 
concentrations of acrylamide using the Webb model. 
 
 
 
 
 

Table 2. Statistical analysis of kinetic models. 
 
Model p RMSE adR2 MPSD AICc BIC HQC BF AF 
Luong 4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Yano 4 0.0140 0.9951 3.449 -44.190 -73.401 -75.893 0.990 1.032 
Tessier-
Edward 3 0.0826 0.8108 14.480 -24.533 -41.941 -43.810 0.981 1.076 
Aiba 3 0.0534 0.9310 9.198 -32.401 -49.809 -51.678 0.949 1.110 
Haldane 3 0.0127 0.9961 3.149 -58.190 -75.599 -77.467 0.990 1.032 
Monod 2 0.1734 -0.6556 40.605 -18.998 -29.403 -30.649 1.079 1.363 
Han and 
Levenspiel  5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Moser 3 0.1514 0.0052 32.928 -13.625 -31.033 -32.902 1.059 1.270 
Hinshlewood 4 0.2083 -2.4461 49.182 4.470 -24.741 -27.233 1.079 1.363 
Webb 4 0.0107 0.9971 4.380 -48.993 -78.204 -80.695 1.001 1.023 
Note: 
p  no of parameter 
RMSE  Root Mean Squared Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
n.a Not available 
 
CONCLUSION 
 
To conclude, the key modelling practice for the growth of this 
acrylamide by bacterium yields substantial real growth rates 
which have successfully been used with Luong as the best model 
in the secondary modelling exercises. The Luong’s constants; 
maximal growth rate, half-saturation constant for maximal 
growth, maximal concentration of substrate tolerated and curve 
parameter that defines the steepness of the growth rate decline 
from the maximum rate symbolized by µmax, Ks, Sm, and n were 
0.66 per day (95% C.I., 0.51 to 0.82), 18.29 mg/L (95% C.I., -
17.51 to 54.10), 5198 mg/L (95% C.I., 4642 to 5755) and 1.37 
(95% C.I., 0.54 to 2.21), respectively. Acrylamide is poisonous 
and completely inhibits acrylamide degradation and growth on 
this substrate as according to the Luong model suggesting that to 
a certain limit, bioremediation might not be successful. To date, 
a simulation exercise like this has been used to model acrylamide 
growth kinetics. 
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