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INTRODUCTION 
 
An anionic surfactant such as SDS is a key component in laundry 
detergents and has been detected in varying concentrations in 
wastewater. The presence of these compounds in water bodies 
can significantly affect water quality due to their high foaming 
capacity and persistence. Surfactants can modify the surface 
tension of water, affecting the oxygen flow to aquatic habitats 
and leading to hypoxic conditions. Surfactants have been 
thoroughly documented to have negative effects on aquatic 
creatures, particularly invertebrates and crustaceans. Surfactants 
can damage cell membranes, making them more permeable and 
leading to the leakage of cellular contents [1–3]. Detergents are 

known for their detrimental impact on marine species [4–6]. 
Previous studies have shown that anionic surfactants are toxic to 
many aquatic species at concentrations ranging from 0.0025 to 
300 mg/L [7].It affected the life cycle of aquatic creatures and 
changed their behavior [8].  
 

A study discovered that the oyster's digestive gland reacts to 
Sodium dodecyl sulfate (SDS) exposure, causing negative 
impacts on the nutritional and metabolic functions of the oyster, 
leading to a decrease in its survival rate [9]. Augmenting the 
concentration of anionic surfactants in water will cause increased 
pollution levels, resulting in more severe impacts on 
invertebrates and crustaceans.  
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 ABSTRACT 
The use of silver nanoparticles in fabrics in conjunction with detergent in washing may release 
silver ions that can inhibit detergent remediation by microorganisms. The SDS-degrading 
bacterium, Pseudomonas sp. strain Maninjau1, showed prominent inhibition in the presence of 
silver ion. When exposed to varying silver concentrations, the bacterium's growth followed a 
sigmoidal pattern, exhibiting lag periods ranging from 2.5 to 5.5 hours, as modeled using the 
modified Gompertz model. Increasing the silver concentrations progressively slowed bacterial 
growth, with concentrations as low as 1.0 mg/L halting bacterial growth rate altogether. To assess 
these effects, the modified Gompertz model was used to determine growth rates across different 
silver concentrations. The results were then evaluated against several models, including the 
modified Han-Levenspiel, Wang, Liu, Shukor, modified Andrews, and Amor models. The Amor 
model did not adequately fit the growth curves. Statistical analysis revealed that the modified 
Han-Levenspiel model performed best, as indicated by the lowest RMSE and AICc values, the 
highest adjusted correlation coefficient (adR2), and AF and BF values closest to unity. The Liu, 
Shukor, modified Andrews, and Wang models followed in descending order of performance. The 
parameters obtained from the modified Han-Levenspiel model, which are µmax (h-1) and Ccrit (mg 
L-1) and m which represent maximum growth rate, critical heavy metal ion concentration and 
empirical constant values were 0.196, 1.1134 and 0.632, respectively. The modified Han-
Levenspiel model effectively predicts the critical concentrations of heavy metals that can 
completely inhibit bacterial growth. This robust modeling approach highlights the model's 
suitability for forecasting the impact of silver on the growth dynamics of Pseudomonas sp. strain 
Maninjau1, particularly under conditions of toxic stress. 
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 Research has demonstrated that SDS is very toxic to 
Daphnia magna, a prevalent freshwater invertebrate, causing 
significant death even at concentrations as low as 5 mg/L [10]. 
The amount of surfactants found in residential and industrial 
wastewater sources can vary significantly. In household 
wastewater the detergent levels typically fall between 3 to 21 
mg/L. However, in wastewater, from industries like textiles and 
laundry services the surfactant concentrations can soar as high as 
10,000 mg/L. These elevated levels present challenges for 
treating wastewater. Managing such high surfactant levels poses 
difficulties during the wastewater treatment process due to their 
chemical makeup and their ability to disrupt treatment methods. 
For instance, substances like sodium dodecyl sulfate (SDS) are 
particularly stubborn to break down.  

 
SDS hinder the processes crucial for effective wastewater 

treatment. Adjustments to treatment approaches, such, as 
improving biodegradation capabilities or incorporating filtration 
methods are often required to tackle these elevated 
concentrations of anionic surfactants [11].  SDS-degrading 
bacteria serve as effective tools for SDS bioremediation, 
particularly in dilute and complex matrices such as river and 
seawater. However, the degradation process can be hampered by 
the presence of heavy metals like silver, silver, and copper, 
posing significant challenges to bioremediation efforts. 
Understanding the threshold concentration of these metals that 
can inhibit bacterial growth is crucial for optimizing 
bioremediation strategies and ensuring effective degradation of 
SDS in contaminated environments. This knowledge helps in 
setting appropriate limits and conditions under which 
bioremediation can proceed effectively, despite the potential 
toxic effects of heavy metals. 
 

Silver, in its various forms such as silver, silver 
nanoparticles, and ionic silver, exhibits different levels of 
toxicity towards microorganisms, animals, and humans. Toxicity 
levels and types are primarily determined by the form of silver 
and the extent of exposure. Silver has been highly esteemed for 
its properties over the years. Its main mechanism of action 
against microorganisms involves interacting with thiol groups in 
enzymes and proteins, leading to alterations and disruptions in 
cellular functions. Silver exposure can disrupt the processes of 
bacteria and fungi, potentially leading to cell death. Silver 
nanoparticles are highly efficient because of their large surface 
area. Discover applications in coatings for medical devices and 
water purification systems. Concerns have been raised about the 
development of resistance to silver as an antimicrobial agent, 
which could result in the emergence of 'superbugs' that are more 
difficult to treat [12–17]. 
 

Silver toxicity in animals primarily manifests through oral 
ingestion and inhalation exposure. Research on aquatic 
organisms such as fish has shown that the build-up of silver in 
their gills can result in respiratory problems and potentially fatal 
consequences [18]. Silver nanoparticles are concerning because 
their small size allows them to easily penetrate biological barriers 
and accumulate in various organs. Nanoparticle exposure has 
been linked to lung inflammation, liver toxicity, and altered 
responses in mammals such as laboratory rodents. Toxicity levels 
are influenced by factors like nanoparticle size, coating, 
concentration, and duration of exposure. People primarily 
encounter silver through skin contact, ingestion, or inhalation. 
When in work environments or using medical products that 
contain silver. Extended contact with silver can result in argyria. 
Gray discoloration of the skin and tissues caused by 
accumulation. Although argyria is typically considered non-life-
threatening, excessive absorption of silver can lead to more 

severe health complications such as neurological disorders, 
kidney damage, and liver injury. Prudent management is 
essential when utilizing silver in consumer goods and medical 
devices to avoid health implications, as silver can be absorbed 
through various pathways [12–17,19–22]. 
 

Toxic metal ions in contaminated wastewater have been 
proven to hinder bacterial growth and the processing of 
dangerous compounds. Heavy metals specifically impede the 
biodegradation process and hence limit bioremediation attempts. 
Heavy metal ions are non-degradable, unlike most other 
inhibitors. When bacteria acquire dangerous amounts of 
substances, it greatly hinders their growth rate. Given the 
persistence of heavy metals in the environment and organisms, it 
is essential to address their influence. To comprehend and 
forecast the inhibitory impacts of these metals, one useful method 
is to adjust the substrate inhibition model. By modifying this 
model, researchers can enhance their analysis and measurement 
of the inhibitory impacts induced by hazardous ions, resulting in 
more efficient approaches for treating contaminated wastewater 
[23–29]. 
 

Metal inhibition models include the modified Han-
Levenspiel [30], Wang [31], Liu [32], modified Andrews[33], 
Amor [34] and the Shukor model [35,36] have been utilised [37] 
to evaluate the result of heavy metal on the bacterial growth rate 
on toxic substances. From these models inhibition related 
constants, which include C, Ccrit, µ, µmax, Kc, Ks, Ki and m which 
represent heavy metal ion concentration (g/l), critical heavy 
metal ion concentration (g/l), initial growth rate (g/l h), maximum 
growth rate (g/l h), inhibition constant (g/l), Monod constant 
(g/l), metal inhibition constant (g/l) and empirical constant 
values, respectively, can be found. Silver has been demonstrated 
to strongly inhibited the growth of an SDS-degrading bacterium 
[38,39]. This study aims to investigate how silver impacts the 
growth rate of this bacterium on SDS by utilizing several 
inhibitory models.   
 
MATERIALS AND METHODS 
 
Media for the Growth and maintenance of SDS-degrading 
bacterium 
The growth of the SDS-degrading bacterium—Pseudomonas sp. 
strain Maninjau1 [38,39] on SDS was characterized in a 
microtiter plate format as before [40,41]. The bacterium was 
grown on a SDS as a sole carbon source on basal salts (BS) 
medium containing the followings: Na2HPO4, (1.39 g l-1), 
KH2PO4, (1.36 g l-1), KNO3, (0.5 g l-1), CaCl2 (0.01 g l-1), MgSO4 
(0.01 g l-1), and (NH4)2SO4 (7.7 g l-1) [38]. SDS was added into 
the medium (filter-sterilized) at 1.0 g l-1. The microplates 
(Corning® microplate) were incubated for 48 h sealed at 30 oC 
and the growth of bacterium on SDS was read at 600 nm at 
suitable time intervals (BioRad reader, model 680, Richmond, 
CA).  
 
Modified Gompertz model 
The modified Gompertz model was used to predict the specific 
growth rate on SDS, a standard approach for predicting 
microorganism growth on xenobiotics [42–44]. The equation is 
as follows; 
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The result from the initial modeling exercise was 
subsequently utilized to model the impact of metal in the 
following manner; 
 
Metal inhibition models 
The models utilized in this study is as follows (Table 1); 
 
Table 1. Various growth inhibitory models. 
 
Models Equation Authors 
Modified Han-
Levenspiel 𝑟𝑟 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 �1 −

𝐶𝐶
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
𝑚𝑚

 
[30] 

Wang 𝑟𝑟 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

1 + � 𝐶𝐶𝐾𝐾𝐶𝐶
�
𝑚𝑚 

 

[31] 

Liu 𝑟𝑟 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐶𝐶
𝐾𝐾𝐶𝐶 + 𝐶𝐶  [32] 

Modified 
Andrews 𝑟𝑟 =

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶

𝐾𝐾𝑠𝑠 + 𝐶𝐶 + �𝐶𝐶
2

𝐾𝐾𝑖𝑖
�
 [33] 

Amor 𝑟𝑟 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶

𝐶𝐶 + �𝐶𝐶
2

𝐾𝐾𝑖𝑖
�
 

 

[34] 

Shukor 
𝑟𝑟 = 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �

𝐶𝐶
𝑆𝑆𝑚𝑚
�
𝑛𝑛

� 
[36] 

   
 
Nonlinear regression Software  
The nonlinear equations were optimized using a Marquardt 
algorithm in CurveExpert Professional software (Version 1.6). 
The algorithm seeks the optimal approach that reduces the total 
sum of the squares between anticipated and observed values. The 
software automatically determines the initial values using the 
steepest ascent algorithm. 
 
Error function analysis 
Numerous statistical methods including the corrected AICc 
(Akaike Information Criterion), Root-Mean-Square Error 
(RMSE), bias factor (BF), accuracy factor (AF), and adjusted 
coefficient of determination (R2) was utilized as before [45]. 
 
RESULTS AND DISCUSSION 
 
Growth of the bacterium at various concentrations of silver 
shows a sigmoidal pattern with lag periods ranging from 2.5 to 
5.5 h (Fig. 1). As the concentration of silver was increased, the 
overall growth was inhibited with 1.0 mg/L causing an almost 
cessation of growth. To obtain growth rates at different 
concentrations of silver, the modified Gompertz model was 
utilized (Fig. 2), which shows close fitting to the model.  
 
 
 
 
 
 
 
 
 
 
 
 

The model also shows that as the concentration of silver was 
increased, this led to a decrease in growth rates and an increase 
in lag period as well. 

 
 
Fig. 1. Growth of Pseudomonas sp. strain Maninjau1 at 1.0 g/L SDS 
under various concentrations of silver (from 0.2 to 1.0 mg/L). The error 
bars represent mean ± standard deviation of triplicates. 
 

 
Fig. 2. Growth (log transformed) of Pseudomonas sp. strain Maninjau1 
at 1.0 g/L SDS under various concentrations of silver (from 0.2 to 1.0 
mg/L) as modelled using the modified Gompertz model.  
 

The growth rates at different silver concentrations were 
analysed using existing metal inhibition models. Out of all the 
models, only the Amor model did not conform to the curve (Figs. 
3 to 7). The statistical analysis results indicated that the modified 
Han-Levenspiel model outperformed all other models based on 
the lowest values for RMSE and AICc, highest adjusted 
correlation coefficient (adR2) and values of AF and BF closest to 
unity. This is followed in descending order by the Liu, Shukor, 
modified Andres and Wang model (Table 2). 
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Table 2. Error function analysis for the models fitting the inhibition of 
silver to the growth rate of Pseudomonas sp. strain Maninjau1 on SDS. 
 
Model p adR2 AF BF AICc 
Modified Han-Levenspiel 3 0.98 1.02 1.00 -40.19 
Liu 2 0.75 1.06 0.97 -39.83 
Shukor 3 0.96 1.03 0.99 -37.36 
Modified Andrews 3 0.90 2.21 0.46 -30.61 
Wang 3 0.89 1.05 0.98 -30.40 
Note:  
p no of parameter 
adR2 adjusted correlation coefficient 
RMSE Root mean square error 
AF Accuracy factor 
BF Bias factor 
AICc corrected Akaike Information Criteria 
n.a. not available 
 

 
 
Fig. 3. The effect of silver on the growth rate of Pseudomonas sp. strain 
Maninjau1 on SDS as modelled using the Wang model. 
 
 

 
 
Fig. 4. The effect of silver on the growth rate of Pseudomonas sp. strain 
Maninjau1 on SDS as modelled using the modified Han-Levenspiel 
model. 
 

 
Fig. 5. The effect of silver on the growth rate of Pseudomonas sp. strain 
Maninjau1 on SDS as modelled using the Liu model. 
 

 
Fig. 6. The effect of silver on the growth rate of Pseudomonas sp. strain 
Maninjau1 on SDS as modelled using the modified Andrews model. 
 

 
Fig. 7. The effect of silver on the growth rate of Pseudomonas sp. strain 
Maninjau1 on SDS as modelled using the Shukor model. 
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Table 3. Models’ parameters for the effect of silver on the growth rate of 
Pseudomonas sp. strain Maninjau1 on SDS. 
 

Model, parameters (95% confidence interval) 
Modified Han-Levenspiel  
µmax (h-1) 0.196 (0.175 to 0.216) 
Ccrit (mg L-1) 1.134 (0.852 to 1.416) 
m 0.632 (0.199 to 1.065) 
Liu  
µmax (h-1) 0.209 (0.154 to 0.263) 
K 0.662 (0.123 to 1.202) 
Shukor  
µmax (h-1) 0.196 (0.168 to 0.224) 
Sm (mg L-1) 1.324 (0.979 to 1.668) 
n 1.169 (0.484 to 1.853) 
Modified Andrews  
µmax (h-1) 0.990 (-8.758 to 10.738) 
Ks (mg L-1) 0.113 (-1.178 to 1.405) 
Ki (mg L-1) 5.041 (-45.327 to 55.409) 
Wang  
µmax (h-1) 0.990 (-8.758 to 10.738 
Kc 5.041 (-45.327 to 55.409 
m 0.113 (-1.178 to 1.405 
 

The parameters obtained from the Modified Han-Levenspiel 
model, which are µmax (h-1) and Ccrit (mg L-1) and m which represent 
maximum growth rate, critical heavy metal ion concentration and 
empirical constant values were 0.196, 1.1134 and 0.632, 
respectively. The modified Han-Levenspiel model allows for the 
prediction of the critical heavy metals concentration which can 
completely inhibited bacterial growth. The modified Han-
Levenspiel model is also the best model for modelling the 
inhibition of silver to the SDS-degrading bacterium 
Pseudomonas sp. strain DRY15 [36] and tributyl tin to the 
growth rate of Bacillus subtilis [35], modelling the effect of 
copper on the molybdenum-reduction rate of the Antarctic 
bacterium Pseudomonas sp. strain DRY1 [46], modelling the 
effect of Fe2+ concentration on the kinetics of biohydrogen 
production [47], modelling the effect of copper on the growth rate 
of Enterobacter sp. strain Neni-13 on SDS [48], modelling the 
inhibitory effects of salts and heavy metal ions on biodegradation 
of Congo red by Pseudomonas sp. mutant [37], modelling the 
effect of copper nanoparticles on the fermentative hydrogen 
production by Enterobacter cloacae and Clostridium 
acetobutylicum [49], modelling the effect of NaCl on the 
hydrogen production of a marine bacterium, Vibrio tritonius [50] 
and modelling the inhibitory effect of Cu(II) on Nostoc 
muscorum biomass growth and nitrate uptake [51]. 
 

Current literature provides diverse perspectives on how 
heavy metals inhibit the biodegradation of organic contaminants 
by bacteria, presenting a range of models and techniques to 
address these challenges. In polluted environments, heavy metals 
can hinder the breakdown of organic contaminants, such as 
monoaromatic hydrocarbons, by damaging microbial 
populations. Research has shown that heavy metals like zinc and 
nickel can significantly impede the growth and metabolic 
functions of bacteria, such as Bacillus sp. and Pseudomonas sp., 
which are crucial for pollutant degradation. The Andrews model, 
for instance, offers quantitative insights into inhibitory 
concentration levels and their effects on microbial growth rates, 
helping researchers understand and predict the impacts of heavy 
metals on these bacterial functions [34]. 
 

Current research is examining the complexities of metal 
inhibition in microbial biodegradation processes. Soil's heavy 
metal bioavailability affects the breakdown of organic matter by 
microorganisms. Enhancing microbial resistance and 
biodegradation efficiency can be achieved by genetically and 
cellularly responding to metal stresses [52]. These findings 
emphasize the significance of developing metal-resistant 

bacterial strains and bioremediation methods to combat organic 
and metal pollution. Continued research in this field is essential 
for improving the effectiveness of bioremediation techniques in 
metal-contaminated areas. The literature lacks adequate 
representation of metal inhibition models, despite their 
significance in studying the presence of heavy metals in polluted 
streams combined with organic pollutants.  Heavy metals attach 
to crucial functional groups of enzymes, like the sulfhydryl group 
commonly located at enzyme active sites, which likely causes 
inhibition [37].  

 
Key approaches in reducing the inhibitory effect of silver 

involve biostimulation, which is injecting nutrients and making 
other alterations in polluted areas to speed up the natural 
biodegradation process. Modifying nutrient concentrations can 
enhance microbial growth and activity, hence mitigating the 
impact of metal inhibitors including silver [53]. Silver-resistant 
microbial strains or consortia designed to degrade hydrocarbons 
in the presence of heavy metals can greatly enhance the 
effectiveness of bioremediation. Specialized bacteria use metal 
efflux systems and enzymatic mechanisms to reduce metal 
toxicity. Chelators or sequestrants can decrease the harmful 
impact of metals on microbial populations by binding to them 
and reducing their bioavailability. Chelators such as EDTA and 
citric acid can create stable complexes with metals, which 
inhibits their interaction with hydrocarbon-degrading microbial 
enzymes [54].  

 
Developing genetically modified microorganisms with 

enhanced silver tolerance and the ability to break down organic 
pollutants is a feasible method. These genetically modified 
bacteria can activate genes that offer resistance to metals or 
improve metabolic pathways for breaking down hydrocarbons. 
Plants can be used to clean up regions contaminated with 
hydrocarbons and metals. Some plants can collect heavy metals 
in their tissues and host hydrocarbon-degrading bacteria in their 
root zone [55]. Immobilization methods such as solidification, 
stabilization, and vitrification can reduce silver mobility and 
bioavailability in the environment. This restricts their 
engagement with microbial communities responsible for 
breaking down organic pollutants [56]. 
 
CONCLUSION 
 
In conclusion, the application of metal inhibition models to 
evaluate the effects of silver ions on bacterial growth rates in the 
presence of toxic substances remains underexplored, despite the 
vital importance of such research. This study analyzed the impact 
of silver on the growth of an SDS-degrading bacterium using 
various metal inhibition models. The modified Han-Levenspiel 
model was identified as the most effective, accurately predicting 
the critical concentration of heavy metals that completely inhibits 
bacterial growth. It is expected that in environments 
contaminated with heavy metals, bacterial growth rates on toxic 
substances will be further compromised as the bacteria 
simultaneously contend with the toxicity of both pollutants. The 
findings from this study are particularly valuable for field trials 
focused on SDS bioremediation in areas also contaminated with 
silver. 
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