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INTRODUCTION 
Bioremediation clearly remains the most cost-effective method 
of removing contaminants when other methods like physical or 
chemical procedures are ineffective. One of the essential heavy 
metals, molybdenum is harmful to a number of organisms at high 
concentrations and is needed in trace amounts. It is used in a 
variety of industrial processes as an alloying agent, an antifreeze 
component for car engines, a corrosion-resistant steel 
component, and a lubricant in the form of molybdenum 

disulphide. The widespread use of molybdenum in industry has 
led to several incidents of water contamination worldwide, 
including in the Black Sea, Tyrol in Austria, and Tokyo Bay, 
where molybdenum levels reach hundreds of parts per million 
[1]. Molybdenum has also been identified as a significant 
pollutant in terrestrial sewage sludge contamination that poses a 
health risk [1]. It has been documented that molybdenum toxicity 
in organisms like catfish and mice can disrupt spermatogenesis 
and halt embryogenesis at concentrations as low as parts per 
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 ABSTRACT 
In the foreseeable future, bioremediation is by far the most cost-effective method for removing 
noxious chemical toxins and organic contaminants, especially at low concentrations when other 
methods like physical or chemical procedures wouldn't be successful. For the objective of 
bioremediation, we have isolated a molybdenum-reducing bacteria from agricultural soil. The 
ideal pH and temperature ranges for the bacterium to reduce molybdate to molybdenum blue 
(Mo-blue) are 6.3 and 6.8, respectively. The best electron donor for molybdate reduction was 
glucose, which was followed in descending order by sucrose, lactose, l-rhamnose, d-mannose, 
raffinose, d-adonitol, maltose, d-mannitol, melibiose, cellobiose, glycerol, and d-sorbitol. 
Phosphate concentrations of 7.5 mM and molybdate concentrations of 15 – 20 mM are also 
necessary. The Mo-blue that was formed had an absorption spectrum that was comparable to that 
of earlier Mo-reducing bacteria and closely resembled that of reduced phosphomolybdate. At 2 
ppm, copper (II), mercury (I), and silver I hindered molybdenum reduction by 80.2, 74.8, and 
30.4%, respectively. The bacterium was tentatively identified as Enterobacter aerogenes strain 
Amr-18 after phenotypic and biochemical identifications. The bacterium could thrive on the 
amides, acrylamide, acetamide, and propionamide and could use acrylamide as an electron donor 
for molybdenum reduction. This bacterium has a highly valued trait that makes it useful for 
bioremediation: the capacity to detoxify a variety of toxicants.  
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million [2,3]. Similarly, at a slightly high levels, molybdenum is 
extremely toxic to ruminants, with cows being the most impacted 
[4–6]. 

As a cost-effective technique for removing heavy 
metals and organic contaminants, bioremediation surpass 
especially at low concentrations where other techniques like 
physical or chemical procedures would fail [7]. Through 
reduction, several bacteria may detoxify a range of xenobiotics, 
including heavy metals [8,9]. Amides are harmful xenobiotics, 
including propionamide and acrylamide (Fig. 1). It serves as the 
foundation for the polymer; polyacrylamide. There are several 
applications for this polymer, including stabilizing tunnels and 
dams, sewage flocculating agents, and industrial adhesives [10]. 
In Sweden, environmental contamination with acrylamide has 
been linked to acute episodes of toxicity that have killed fish and 
cows [11]. Polyacrylamide, which is used in 20–30% of the 
formulation of the pesticide glyphosate as a dispersion agent 
[12], may be a significant source of acrylamide pollution in soil 
and runoff. There have been reports of acrylamide pollution at 
quantities as high as 1 g/L from the acrylonitrile-acrylamide 
industry [13]. 

 

 
(a) 

 
(b) 

 
Fig. 1. The structure of acrylamide (a) and propionamide (b). 

 
In the current study, a novel molybdenum-reducing bacterium 
that was isolated from agricultural soil for its capacity to either 
employ xenobiotics as independent electron donors for reduction 
or as carbon sources for growth was studied. Previously, the 
bacterium was isolated in order to biocontrol a plant fungal 
pathogen [14]. We intentionally use static growth or conditions 
because they are simple to achieve in a microplate environment 
where the oxygen concentration is lower than under aerobic 
conditions (20% environmental oxygen, EO), where most 
bioremediation conditions would have to be carried out in aquatic 
bodies or soils where the EO level is less than 20% EO and other 
electron acceptors such as nitrate would start to accumulate to be 
use [15]. This bacterium can thrive on the amides; acrylamide, 
acetamide and propionamide and can use acrylamide as a source 
of electron donor for molybdenum reduction. These properties 
make this bacterium suitable for bioremediation of both the 
organic pollutants (amides) and the heavy metal (molybdenum). 
 
MATERIALS AND METHODS 
 
Bacteria isolation of molybdate-reducing bacterium 
In 2014, soil samples were gathered from the grounds of a 
polluted site (5 cm below the topsoil) in Sadat City, Egypt. Into 
a sterile tap water, 1 g of the soil sample was suspended. Agar 
with low phosphate media (pH 7.0) was pipetted and spread with 
an aliquot of the soil suspension equal to 100 µL. It was then 
incubated at room temperature for 48 hours. Glucose (1%), 
(NH4)2SO4 (0.3%), MgSO4.7H2O (0.05%), yeast extract (0.5%), 
NaCl (0.5%), Na2MoO4.2H2O (0.242% or 10 mM) and Na2HPO4 
(0.071% or 5 mM) made up the low phosphate media (LPM). To 
avoid the formation of molybdenum blue, which hampers 
analytical tasks, the HPM uses a greater phosphate content. In 
HPM, the bacterium still exhibits molecular activity [16].  
 

The development of blue colonies is a sign that molybdenum-
reducing bacteria are reducing molybdate. To establish pure 
culture, the colony with the greatest blue intensity was selected 
and re-streaked on low phosphate media (LPM). Molybdenum 
reduction in liquid media (at pH 7.0) was performed in 100 mL 
of the aforementioned media in a 250 mL shake flask culture at 
room temperature for 48 hours on an orbital shaker set at 120 rpm 
with the aforementioned media but with a higher phosphate 
content of 100 mM. By removing 1.0 mL of the Mo-blue 
produced by the liquid culture above and centrifuging it at 10,000 
× g for 10 minutes at room temperature, it was possible to analyze 
the Mo-blue absorption spectra. Using a UV-spectrophotometer, 
the supernatant was scanned from 400 to 900 nm (Shimadzu 
1201). The baseline adjustment used the low phosphate medium.  
 
Identification of Mo-reducing bacterium 
The bacterium was phenotypically and biochemically 
characterized using conventional methods such as colony shape, 
gram staining, size and colour on nutrient agar plate, motility, 
oxidase (24 h), ONPG (beta-galactosidase), catalase production 
(24 h), ornithine decarboxylase (ODC), arginine dihydrolase 
(ADH), lysine decarboxylase (LDC), nitrates reduction, Methyl 
red, indole production, Voges-Proskauer (VP), hydrogen sulfide 
(H2S), acetate utilization, malonate utilization, citrate utilization 
(Simmons), esculin hydrolysis, tartrate (Jordans), gelatin 
hydrolysis, urea hydrolysis, deoxyribonuclease, lipase (corn oil), 
phenylalanine deaminase, gas production from glucose and 
production of acids from various sugars were carried out 
according to the Bergey’s Manual of Determinative Bacteriology 
[17]. The ABIS online system was used to interpret the findings 
[18]. 
 
Resting cells preparation to characterize molybdate 
reduction  
The effects of pH, temperature, phosphate, and molybdate 
concentrations on molybdenum reduction to Mo-blue were 
studied statically using resting cells in a microplate or microtiter 
format, as previously developed [19].  The only difference 
between the High Phosphate Media (HPM) and Low Phosphate 
Media (LPM) was the phosphate concentration, which was fixed 
at 100 mM for the HPM. Cells from a 1 L overnight culture were 
grown in the HPM at room temperature on an orbital shaker (150 
rpm). Centrifugation at 15,000 × g for 10 minutes was used to 
remove any remaining phosphate from the cells' pellet before it 
was resuspended in 20 mL of low phosphate media (LPM) 
without glucose, resulting in an absorbance of roughly 1.00 at 
600 nm. All of the Mo-reducing bacteria that have been isolated 
to date preferred a phosphate concentration of 5 mM in the low 
phosphate media, so this concentration was used in this study.  
 

Molybdate reduction was found to be strongly inhibited by 
higher concentrations [16,20–34]. A sterile microplate was then 
filled with 180 L using a sterile pipette. Then, to start the 
production of Mo-blue, 20 µL of sterile glucose from a stock 
solution was added to each well. The tape was sealed using a 
sterile, gas-exchange-permitting Corning® microplate. A room-
temperature incubator was used for the microplate. A BioRad 
(Richmond, CA) Microtiter Plate reader was used to measure 
absorbance at 750 nm at predetermined intervals (Model No. 
680). The maximum filter wavelength that could be used with the 
microplate unit was 750 nm, so the production of Mo-blue from 
the media in a microplate format was measured using the specific 
extinction coefficient of 11.69 mM.-1.cm-1 at that wavelength. 
Resting cells of the bacterium were incubated in a microtiter plate 
under optimized conditions for 48 hours. 
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Heavy metals effect on molybdate reduction 
Lead (II), arsenic (V), copper (II), mercury (ii), silver chromium 
(VI), and cadmium (II) were among the highly toxic heavy metals 
that were prepared from either commercial salts or MERCK 
standard solutions for atomic absorption spectrometry (AAS). In 
a microplate format, the bacterium was incubated with heavy 
metals at various concentrations. The same wavelength of 750 
nm was used to gauge the production of Mo-blue. 
 
Screening for growth and molybdate reduction on amides 
and nitriles 
Using the aforementioned microplate format, it was determined 
whether amides and nitriles like acrylamide, nicotinamide, 
acetamide, iodoacetamide, propionamide, 2-chloroacetamide, 
acetamide, acetonitrile, acrylonitrile, and benzonitrile could 
support molybdenum reduction as electron donors. This was 
done while taking into account the general toxicity and solubility 
of [35]. After that, 200 uL of the media and 50 L of a suspension 
of resting cells were applied to the microplate wells. The 
microplate was incubated for three days at room temperature, and 
as before, the quantity of Mo-blue generation was detected at 750 
nm. Using the microplate format described above, the media 
below were used with the exception of molybdate, and glucose 
was substituted with the xenobiotics at a final concentration of 
200 mg/L in a volume of 50 L to test whether the aforementioned 
compounds could support the growth of this bacterium 
independently of molybdenum-reduction. The growth media 
(LPM) contained the following components: yeast extract 
(0.01%), (NH4)2SO4 (0.3%), NaNO3 (0.2%), MgSO4.7H2O 
(0.05%), NaCl (0.5%), and Na2HPO4 (0.705% or 50 mM). The 
media were changed to a pH of 7.0. After three days of incubation 
at room temperature, the rise in bacterial growth was observed 
and measured at 600 nm. 
 
Statistical analysis 
The data represent means ±SD. Graphpad Prism 3.0 and 
Graphpad InStat 3.05, both accessible from www.graphpad.com, 
were used to analyze the data. For group comparisons, either a 
student t-test or one-way analysis of variance with post hoc 
analysis by Tukey's test was used. Statistics were deemed 
significant at P<0.05. 
 
RESULTS AND DISCUSSION 
 
Identification of molybdenum-reducing bacterium 
The bacterium was a short, motile, facultative anaerobe and 
Gram-negative. The colonies were round, smooth, cream-
colored, glossy, and between 1 and 3 mm in diameter. Bergey's 
Manual of Determinative Bacteriology [17] and the ABIS online 
software [18] were used to compare the results of the cultural, 
morphological, and numerous biochemical tests (Table 1) to the 
results of the bacteria. The software provided three choices for 
the bacterial identity, with Enterobacter aerogenes having the 
highest homology (87%) and accuracy (100%). To further 
identify this species, more research will be required in the future, 
particularly using molecular identification methods based on 
comparison of the 16srRNA gene. The preliminary name for the 
bacterium at this time is Enterobacter aerogenes strain Amr-18. 
 
 
 
 
 
 
 
 
 

Table 1. Biochemical tests for Enterobacter aerogenes strain Amr-18. 
 

Motility + Acid production from:  
Pigment ‒   

Catalase production (24 h) + 
Alpha-Methyl-D-
Glucoside + 

Oxidase (24 h) ‒ D-Adonitol + 
ONPG (beta-galactosidase) + L-Arabinose + 
Arginine dihydrolase (ADH) + Cellobiose + 
Lysine decarboxylase (LDC) ‒ Dulcitol + 
Ornithine decarboxylase (ODC) + Glycerol + 
Nitrates reduction + D-Glucose + 
Methyl red ‒ myo-Inositol + 
Voges-Proskauer (VP) + Lactose + 
Indole production ‒ Maltose + 
Hydrogen sulfide (H2S) ‒ D-Mannitol + 
Acetate utilization + D-Mannose + 
Malonate utilization + Melibiose + 
Citrate utilization (Simmons) + Mucate + 
Tartrate (Jordans) + Raffinose + 
Esculin hydrolysis + L-Rhamnose + 
Gelatin hydrolysis d Salicin + 
Urea hydrolysis + D-Sorbitol + 
Deoxyribonuclease ‒ Sucrose (Saccharose) + 
Lipase (corn oil) ‒ Trehalose + 
Phenylalanine deaminase ‒ D-Xylose + 

Note: + positive result, − negative result, d indeterminate result 

 
A quick and easy high throughput method utilizing a 

microplate format was utilized in this study to speed up 
characterization works and collect more data than the typical 
shake-flask methodology [19,36]. Ghani et al. [21] pioneered the 
use of stationary, resting cells to characterize molybdenum 
reduction in bacteria. Resting cells have been utilized to research 
the biodegradation of xenobiotics such dyes [37,38], diesel [39], 
SDS [40,41], phenol [42], amides [43], and pentachlorophenol 
[44] as well as the reduction of heavy metals like selenate [45], 
chromate [46], and vanadate [47]. 
 
Spectrum for Mo-blue absorption 
Mo-blue generated by Enterobacter aerogenes strain Amr-18 
had an absorption spectrum with a shoulder at around 700 nm and 
a maximum peak close to infrared between 860 and 870 nm with 
a median at 865 nm (Fig. 2). Due of its complicated structure and 
wide variety of species, it is difficult to determine the identity of 
the Mo-blue formed [22]. In a nutshell, isopolymolybdate and 
heteropolymolybdate are two types of molybdenum complexes 
that are reduced to form Mo-blue. According to Campbell et al. 
[20], the Mo-blue that was seen when molybdenum was reduced 
by E. coli K12 might actually be a reduced form of 
phosphomolybdate. When using the phosphate determination 
method, the Mo-blue spectra typically displayed a maximum 
absorption between 880 and 890 nm and a shoulder between 700 
and 720 nm [27]. We have previously demonstrated that the 
entire spectrum of other bacteria's molybdenum blue displayed 
similarities to the spectrum of molybdenum blue obtained using 
the phosphate determination method, and we propose the theory 
that phosphomolybdate is a crucial intermediate between 
molybdenum and Mo-blue [22]. In this study, the absorption 
spectrum result strongly suggests a comparable spectrum, 
supporting the phosphomolybdate theory. Due to the compound's 
intricate structure, precise identification of the 
phosphomolybdate species must be done by NMR or ESR.  
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A less time-consuming and well-accepted technique is to 
characterize heteropolymolybdate species 
spectrophotometrically by looking at the scanning spectroscopic 
profile [48]. Optimal Mo-blue absorption wavelength was 865 
nm, but measurements at 750 nm, is around 30% lower, but 
sufficient for routinely monitoring the production of Mo-blue 
because the intensity was substantially higher than cellular 
absorption at 600–620 nm [19]. Several wavelengths have been 
used in the past to monitor the synthesis of Mo-blue, including 
710 nm [21] and 820 nm [20]. 

 

 
Fig. 2. Scanning absorption spectrum of Mo-blue from Enterobacter 
aerogenes strain Amr-18 at different time intervals. 
 
Effects of pH and temperature on molybdate reduction 
Using Bis-Tris and Tris.Cl buffers, Enterobacter aerogenes 
strain Amr-18 was cultured at pH values ranging from 5.5 - 8.0. 
(20 mM). The best pH range for reduction, according to ANOVA 
analysis, was between 6.0 and 6.8. At pH levels below 5, there 
was a significant inhibition of reduction (Fig. 3). With an optimal 
temperature range between 30 °C and 37 °C, the influence of 
temperature (Fig. 4) was found over a broad temperature range 
(20 to 60 °C), with no significant differences (p>0.05) among the 
measured values as analyzed using ANOVA. The growth of 
Enterobacter aerogenes strain Amr-18 was severely inhibited by 
temperatures lower than 30 °C and higher than 37 °C [49,50]. 
 

 
Fig. 3. pH effect on molybdenum reduction by Enterobacter aerogenes 
strain Amr-18. Data represent mean ± standard deviation (n=3).  

 
Fig. 4.  Temperature effect on molybdenum reduction by Enterobacter 
aerogenes strain Amr-18. Data represent mean ± standard deviation 
(n=3).  
 

Since molybdenum reduction is an enzyme-mediated, 
temperature and pH are significant factors in this process. These 
factors have an impact on protein folding and enzyme activity, 
which inhibits molybdenum reduction. An advantage for 
bioremediation would be the ideal environmental conditions in a 
tropical nation like Malaysia, where the average annual 
temperature ranges from 25 to 35 oC [23]. As a result, both locally 
and in other tropical nations, Enterobacter aerogenes strain Amr-
18 may be a contender for molybdenum soil bioremediation. Due 
to their isolation from tropical soils, the majority of the reducers 
exhibit an optimal temperature range of 25 – 37 ºC [16,23,24,26–
30,32–34,51], with the sole psychrotolerant reducer isolated from 
Antarctica exhibiting an optimal temperature range of 15 – 20 ºC 
[31]. 
 

The Enterobacter aerogenes strain Amr-18 preferred pH 
range for molybdenum reduction is a reflection of the bacterium's 
neutrophilic nature. The ability of neutrophile to thrive between 
pH values of 5.5 and 8.0 is one of their properties. The best pH 
for molybdenum reduction in bacteria is somewhat acidic, with 
optimal pHs ranging from pH 5.0 – 7.0 [20,21,23–34,51,52]. This 
is an important finding. It has been proposed in the past that 
phosphomolybdate's production and stability before it is 
converted to Mo-blue depend significantly on the acidity. In 
order to get the best reduction, substrate stability and enzyme 
activity must be balanced [53]. 
 
Effects of electron donors on molybdate reduction 
The best electron donor enabling molybdate reduction to Mo-
blue among the sources of carbon studied was glucose, which 
was followed in descending order by sucrose, lactose, l-
rhamnose, d-mannose, raffinose, d-adonitol, maltose, d-
mannitol, melibiose, cellobiose, glycerol, and d-sorbitol (Fig. 5), 
however, production of Mo-blue was not supported by other 
carbon sources. Previous research by Shukor et al. indicated that 
sucrose as the most suitable source of carbon for a number of Mo-
reducing bacteria, including Enterobacter cloacae strain 48 [21], 
Serratia sp. strain Dr.Y5 [24], S. marcescens strain Dr.Y9 [16], 
and Serratia marcescens strain DRY6 [23]. In other molybdenum 
reducers like Escherichia coli K12 [20], Pseudomonas sp. strain 
DRY2 [27], Pseudomonas sp. strain DRY1 [31], Enterobacter 
sp. strain Dr.Y13 [25], Acinetobacter calcoaceticus strain 
Dr.Y12 [28], Bacillus pumilus strain lbna [30], Bacillus sp. strain 
A.rzi [33] glucose is most preferred, whereas, fructose is best for 
Klebsiella oxytoca strain hkeem [29]. 
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The bacteria could generate NADH and NADPH by metabolic 
processes such glycolysis, Kreb's cycle, and electron transport 
chain when carbon sources were present in the media. The most 
efficient electron donor appears to be either glucose or sucrose in 
most situations. This may be due to the fact that glucose and 
sucrose produce reducing equivalents like NADH and NADPH 
through normal metabolic pathways much more readily than 
other electron donors, and both reducing equivalents serve as an 
electron donor for molybdate-reducing enzyme activity [51,54]. 
The same situation is seen in chromate reduction, numerous 
bacteria's chromate reductase enzyme uses both NADH and 
NADPH as electron donor substrates, and glucose and sucrose 
are both effective electron donors for chromate reduction [55–
57]. 
 

  
 
Fig. 5. Effect of different electron donor sources (1% w/v) on 
molybdenum reduction. Enterobacter aerogenes strain Amr-18 was 
grown in low phosphate media containing 10 mM molybdate. Data 
represent mean ± standard deviation (n = 3). 
 
Effects of phosphate and molybdate concentrations to 
molybdate reduction 
Determining the phosphate and molybdate concentrations 
supporting optimal molybdenum reduction is important because 
both anions have been reported to impede Mo-blue synthesis in 
bacteria [16,23,25–29,31,33,51], it is crucial to determine the 
phosphate and molybdate concentrations that enable optimal Mo-
blue production. Phosphate concentrations above 7.5 mM greatly 
inhibited reduction, while lower amounts were optimal (Fig. 6). 
Since the complex needs acidic conditions and the higher the 
phosphate content, the stronger the buffering power of the 
phosphate buffer utilized, it was proposed that high phosphate 
levels hinder phosphomolybdate stability. Additionally, a reason 
why the phosphomolybdate complex itself is unstable in the 
presence of high phosphate is still unknown [58–60]. For 
optimum reduction, phosphate concentrations not greater than 5 
mM is needed by all the molybdenum-reducing bacteria that has 
been discovered to date [20,21,23–34,51].  
 

Findings on the impact of molybdenum concentration on the 
reduction process, reveals that the optimum concentration for 
reduction ranged 15 – 20 mM (Fig. 7).  However, a newly 
identified bacterium was able to reduce molybdenum up to 60 
mM, despite lower Mo-blue synthesis. This strain would 
therefore be able to combat high molybdenum pollution due to 
its ability for reducing high molybdenum concentration into an 
insoluble form.  

 
 
 

E. coli K12 [20] and Klebsiella oxytoca strain hkeem [29] 
needed the highest molybdenum concentration (80 mM) for 
optimum reduction, the lowest optimal concentration of 
molybdenum was found in Pseudomonas sp. strain Dr.Y2 at 15 
mM [27]. Other Mo-reducing bacteria, including EC48 [21], S. 
marcescens strain Dr.Y6 [23], S. marcescens strain Dr.Y9 [16], 
Pseudomonas sp. strain Dr.Y2 [27], Serratia sp. strain Dr.Y5 
[24], Enterobacter sp. strain Dr.Y13 [25] and Acinetobacter 
calcoaceticus [28], could also produce excellent Mo-blue. In 
reality, the maximum amount of molybdenum that may be found 
in the atmosphere is roughly 2000 ppm or 20 mM [61]. 
 

 
Fig. 6. Effect of phosphate concentrations on molybdenum reduction by 
Enterobacter aerogenes strain Amr-18. Data represent mean ± standard 
deviation (n = 3).  

 
Fig. 7. The effect of molybdate concentration on molybdenum reduction 
by Enterobacter aerogenes strain Amr-18. Data represent mean ± 
standard deviation (n = 3). 
 
Heavy metals effect on molybdate reduction 
At 2 ppm, copper (II), mercury (II) and silver hindered 
molybdenum reduction by 80.2, 74.8, and 30.4%, respectively 
(Fig. 8). In bioremediation, the inhibitory effects of other metal 
ions offer a significant challenge. Therefore, it's critical to 
identify and isolate bacteria that have a wide range of metal 
resistance capabilities. Mercury is a physiological inhibitor of 
molybdate reduction, as previously stated by Shukor et al. [62]. 
Mo-reducing bacteria were shown to be inhibited by a variety of 
heavy metals, and it was shown that hazardous heavy metals 
block nearly all of the reducers (Table 2). Silver, copper, 
cadmium and other heavy metals frequently target the sulfhydryl 
group of enzymes [63]. It is well known that chromium inhibits 
enzymes like glucose oxidase [64].  
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The ability of the enzyme(s) responsible for the reduction to 
reduce metals was deactivated by the binding of these metals. 

 
Fig. 8. The effect of metals on Mo-blue production by Enterobacter 
aerogenes strain Amr-18. Data represent mean ± standard deviation (n = 
3). 
 
Table 2. Heavy metals inhibition of Mo-reducing bacteria. 
 

Bacteria Heavy Metals that inhibit 
reduction 

Author 

Bacillus pumilus strain 
lbna 

As3+, Pb2+, Zn2+, Cd2+, Cr6+, 
Hg2+, Cu2+ 

[30] 

Bacillus sp. strain A.rzi Cd2+, Cr6+, Cu2+,Ag+, Pb2+, 
Hg2+, Co2+,Zn2+  

[33] 

Serratia sp. strain Dr.Y8 Cr, Cu, Ag, Hg [26] 

S. marcescens strain 
Dr.Y9 

Cr6+, Cu2+, Ag+, Hg2+ [16] 

Serratia sp. strain Dr.Y5 n.a. [24] 

Pseudomonas sp. strain 
DRY2 

Cr6+, Cu2+, Pb2+, Hg2+ [27] 

Pseudomonas sp. strain 
DRY1 

Cd2+, Cr6+, Cu2+,Ag+, Pb2+, 
Hg2+ 

[31] 

Enterobacter sp. strain 
Dr.Y13 

Cr6+, Cd2+, Cu2+, Ag+, Hg2+ [25] 

Acinetobacter 
calcoaceticus strain 
Dr.Y12 

Cd2+, Cr6+, Cu2+, Pb2+, Hg2+ [28] 

Serratia marcescens strain 
DRY6 

Cr6+, Cu2+, Hg2+* [23] 

Enterobacter cloacae 
strain 48 

Cr6+, Cu2+ [21] 

Escherichia coli K12 Cr6+ [20] 

Klebsiella oxytoca strain 
hkeem 

Cu2+, Ag+, Hg2+ [29] 

 
Utilization of amides and nitriles as electron donors for 
growth and molybdate reduction 
It was investigated whether these amides and nitriles could aid 
molybdenum reduction. Only acrylamide, out of all the 
xenobiotics examined, was demonstrated to facilitate 
molybdenum reduction at a lesser efficiency than glucose (Fig. 
9). Independent of molybdenum reduction, the bacterium could 
thrive on the amides; acrylamide, acetamide and propionamide 
(Fig. 10). This is the first report on carbon sources besides carbs 
that might enable bacterial Mo-reduction. Xenobiotics like 
phenol could be used as electron donors in the chromate 
reduction process [65]. Millions of tonnes of amides are 
manufactured annually, including acetamide, propionamide and 
acrylamide. Numerous bacteria that could exploit these amides 
and nitriles as sources of carbon or nitrogen for growth and 
development have been discovered [10,66,67,69–77]. The ability 
to tolerate large concentrations of xenobiotics, salt tolerance, 
heavy metal tolerance, and the capacity to thrive at either extreme 
pHs or temperatures are just a few of the special qualities that 

each of these degraders have. Bioremediation is the preferred 
method for amide degradation due to the abundance of bacteria 
that can degrade amides. The fact that this bacterium can both 
breakdown amide and detoxify heavy metals, which nearly no 
other bacteria have been found to be able to, suggests that it will 
be a particularly helpful bioremediation agent in polluted areas 
having xenobiotics and heavy metals as contaminants. 
 

 
Fig. 9. Mo-blue reduction by xenobiotics at 10 mM in low phosphate 
media. Glucose was the positive control.  Data represent mean ± standard 
deviation (n = 3). 
 

 
Fig. 10. Growth of Enterobacter aerogenes strain Amr-18 on xenobiotics 
independent of molybdenum reduction. Glucose was the positive control. 
Data represent mean ± standard deviation (n = 3). 
 
CONCLUSION 
 
An indigenous bacterium capable of utilizing acrylamide as 
electron donor for molybdenum reduction has been isolated 
locally. The ideal pH and temperature ranges for the bacterium to 
reduce molybdate to Mo-blue are 6.3 – 6.8 and 30 – 35 °C, 
respectively. The best electron donor for molybdate reduction 
was glucose, which was followed by sucrose, lactose, L-
rhamnose, D-mannose, raffinose, D-adonitol, maltose, D-
mannitol, melibiose, cellobiose, glycerol and D-sorbitol in 
descending order. Phosphate concentrations of 7.5 mM and 
molybdate concentrations between 15 and 20 mM. The Mo-blue 
that was formed had an absorption spectrum that was comparable 
to that of earlier Mo-reducing-bacteria and closely resembled that 
of reduced phosphomolybdate. At 2 ppm, copper (II), mercury 
(II) and silver hindered molybdenum reduction by 80.2, 74.8, and 
30.4%, respectively. This bacterium has a highly valued trait that 
makes it useful for bioremediation: the capacity to detoxify 
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several toxicants. Currently, efforts are being made to 
characterize the amide degradation studies and to purify the 
molybdenum-reducing enzyme from this bacterium. 
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