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INTRODUCTION 
Mathematical modeling of bacterial growth and the production 
of bacterial-related products is possible by employing empirical 
or mechanistic models such as the logistics model, the Gompertz 
model, the Baranyi-Roberts model, and others. In addition, each 
of these models is ranked as either primary, secondary, or 
tertiary, depending on its level of importance. The majority of 
models center their attention on the mathematical expressions 
that serve as the basis for important microbiological phenomena 
like as proliferation, inactivation, and persistence. Quantification 

of these activities can be accomplished by the use of cell forming 
units per milliliter, optical density, dry and wet weights, and other 
methods along the same lines [1,2]. Following models study how 
changes to primary model settings (such as temperature, water 
activity, pH, etc.) have an effect on important variables. The 
combination of the primary and secondary models that are 
included in a set of predictive software is referred to as the 
tertiary model [3]. Primary modeling of microbial growth or 
product generation, which may include metal detoxification 
processes, may provide some of the most important information 
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 ABSTRACT 
In the long run, bioremediation is the utmost cost-effective way, particularly at low 
concentrations while other methods like physical or chemical procedures would be ineffective, 
for the elimination of heavy metals and organic pollutants. The process of reducing molybdenum 
(sodium molybdate) with an oxidation state of (VI) to molybdenum blue (oxidation state from V 
to VI) serves as a form of detoxification. Important characteristics, such as specific reduction 
rate, theoretical reduction maximum, and the lag duration of reduction, can be shown by 
mathematical modeling of the reduction process. While natural logarithm transformation is a 
common linearization approach, it is not precise and can only provide a rough estimate of the 
most important single measurable parameter; the specific growth rate. In this study, for the first 
time, values for the aforementioned parameters or constants were calculated using a wide range 
of models, including the logistic, Gompertz, Richards, Schnute, Baranyi-Roberts,  Buchanan 
three-phase, von Bertalanffy and most recently, the Huang model. Based on statistical tests 
including root-mean-square error (RMSE), bias factor (BF), adjusted coefficient of determination 
(adjR2), accuracy factor (AF), and corrected Akaike information criterion (AICc), the logistics 
model was found to be the best model for representing the Mo-blue production curve of Bacillus 
sp. strain khayat. The fitting technique resulted in the calculation of three parameters: specific 
reduction rate (h-1),  Lag period (h), and maximum Mo-blue production (nmole Mo-blue). In this 
study, we utilize a mathematical technique to determine the reduction parameters for Mo-blue 
production from sodium molybdate. The calculated parameter constants will be used to create 
secondary models, such as the influence of substrate and environment on Mo-blue synthesis. 
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for secondary modeling. This information may be gathered via 
primary modeling. 
 

The pervasive use of molybdenum in activities such as in 
industries producing alloys, vehicle engine anti-freeze 
components, corrosion-resistant steel, and molybdenum 
disulphide as a lubricant has been linked to a number of cases of 
water contamination. These cases include those in which 
molybdenum was used as a lubricant. Although it is one of the 
necessary heavy metals that are only required in extremely 
minute quantities, molybdenum poses a threat to many different 
kinds of organisms when it is present in higher concentrations. It 
has potential use in a wide variety of commercial and 
manufacturing contexts. In the industrial sector, the use of 
molybdenum in significant quantities has led to severe problems 
with water contamination on a global scale. It was found that a 
uranium mill in the southern part of the state of Colorado in the 
United States was discharging tailings water that contained 
dissolved Mo values of up to 900 mg/L.  

 
Concentrations of dissolved molybdenum in the aqueous 

discharge of large molybdenum mills in Colorado can reach up 
to about 25 mg/L [4], while concentrations of dissolved 
molybdenum in the aqueous discharge of large open pit copper 
mines in Arizona range from approximately 1 mg/L to about 30 
mg/L [5, 6]. Molybdate is a pollutant that has been found in soil 
and water at quantities of up to approximately 2000 parts per 
million (20.8 Mm) [5]. Because of the neighboring Alaverdi 
copper molybdenum mine, about 300 square kilometers of soil in 
Armenia has been tainted with heavy metals such as lead, copper, 
and molybdenum. The concentrations of heavy metals can be up 
to 40 times higher than the permissible limit in areas that are close 
to mines [6]. This results in severe pollution. In parts of the Black 
Sea, the concentration of molybdenum has been measured to be 
in the hundreds of parts per billion (ppb) [7]. 
 

Molybdenum is extremely poisonous to ruminants at 
concentrations as low as a few parts per million; cows are 
especially susceptible to its effects [8,9]. There have been quite a 
few Mo-reducing bacteria found up to this point, the most 
majority of which have been isolated locally [10-17,18], with a 
few notable outliers [19-22]. In spite of the fact that it is a heavy 
metal, molybdenum is typically regarded as posing a lower risk 
of toxicity to people and other creatures when compared to 
mercury, selenium, and chromium. It is likely that new 
information on the toxicity of molybdenum, which has been 
shown to inhibit spermatogenesis and arrest embryogenesis at 
levels as low as several parts per million [23,24] in organisms 
like catfish and mice, will likely prompt more research into the 
microbial molybdenum detoxification process in the near future. 

 
The molybdenum reduction capability of the Bacillus sp. 

strain khayat has been described in the past. As a function of the 
starting molybdenum concentrations, the bacterial synthesis of 
molybdenum blue followed sigmoidal curves. [Case in point:] 
Previous works [12,25] have explored the kinetics of Mo-blue 
creation; nevertheless, in order to acquire the growth rate 
correctly for secondary modeling, they always resort to 
linearizing the production profile with time. This study aims to 
compare and contrast the Logistic [26,27], Gompertz [27,28], 
Richards [27,29], Schnute [27], Baranyi-Roberts [30], Von 
Bertalanffy [31,32], Buchanan three-phase [1], and most recently 
Huang model [3] (Table 1) models for predicting Mo-blue 
production in this bacterium. Nonlinear regression analysis of 
Mo-blue production has many benefits, so this study will 
 
 

Table 1. Mo-blue production models used in this study. 
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Note: 
A= Metal reduction upper asymptote; 
N0= Metal reduction lower asymptote; 
qm= maximum specific metal reduction rate; 
v= affects near which asymptote maximum metal reduction occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = sampling time 
α,β,k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
For the Baranyi-Roberts model, the lag time (λ) (h-1) or (d-1) can be calculated as h0=µm 

For modified Schnute, A =µ/α 
 
MATERIALS AND METHODS 
 
Isolation and maintenance of the Molybdate-reducing 
bacterium  
Khayat et al. [33] were the ones that initially isolated the bacteria, 
determined its identity, and described it. Manuscript in 
preparation). The growth and maintenance were carried out on 
solid agar in low phosphate media with a pH of 6.5. The medium 
contained glucose at a concentration of 1 percent, (NH4)2SO4 at 
a concentration of 0.3 percent, MgSO4.7H2O at a concentration 
of 0.05 percent, NaCl at a concentration of 0.5 percent, yeast 
extract at a concentration of 0.0.5 percent, Na2MoO4.2H2O at a 
concentration of 0.242 percent, and Na [10]. Separate 
autoclaving was performed on the glucose. 
 
Preparation of resting cells for molybdenum reduction 
characterization  
Resting cells were utilized in a microplate or microtiter format to 
statically monitor Mo-blue production at various sodium 
molybdate concentrations, as was described before [34]. The 
only difference between the Low Phosphate Media and the High 
Phosphate Media was a fixed concentration of 100 mM for the 
HPM, and overnight cultures of 1 liters of High Phosphate Media 
were grown at room temperature on an orbital shaker rotating at 
150 revolutions per minute. The cells were collected by 

Y = N0, IF X < LAG 
Y= N0+ K(X  ̶λ), IF λ ≤ X ≥ QM 

Y = A, IF X ≥ QM 
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subjecting the sample to 10 minutes of centrifugation at 15,000 × 
g. Before being resuspended in 20 mL of low phosphate medium 
(LPM) without molybdenum, the pellet was washed multiple 
times in order to remove any phosphate that might have been 
present. The absorbance at 600 nm was adjusted to around 1.00. 
Higher doses were found to have a more pronounced inhibiting 
effect on molybdate reduction [10-12,14,35-39]. After that, an 
amount of 180 L was pipetted into each well of a microplate that 
had been cleaned. After that, 20 liters of stock solution with 
different amounts of sodium molybdate was poured into each 
well in order to initiate the creation of molybdenum blue. The 
tape was sealed using a sterile gas-permeable sealing tape 
(Corning® microplate), which allowed for gas exchange after it 
was applied. Incubations of microplates were carried out at 
ambient temperature (28 oC). The absorbance at 750 nm was 
measured using a Microtiter Plate reader manufactured by 
BioRad (Richmond, California), and the readings were taken at 
specific intervals (Model No. 680). Mo-blue production was 
quantified by measuring the specific extinction coefficient of the 
medium at 750 nm, which was the longest wavelength for which 
a filter was available for the microplate unit [40]. This was done 
since 750 nm was the longest wavelength for which a filter was 
available. 
 
Determination of Kinetic Parameters for Molybdenum Blue 
production 
 
Fitting of the data 
Nonlinear regression was used to fit the growth data to the 
nonlinear equations, and the Marquardt algorithm, which 
minimizes sums of squares of residuals, was utilized in the 
process with the assistance of the CurveExpert Professional 
program. Nonlinear regression was used to fit the data, and 
nonlinear equations were used (Version 1.6). This lookup 
method's goal is to reduce, as much as possible, the square of the 
difference that exists between the values that were anticipated 
and those that were actually observed. Programming the software 
in question allows for the calculation of initial values of 
parameters to be carried out either automatically or manually. In 
order to estimate m, we searched for the point on the curve that 
had the steepest rise between four reference sites. Discovering 
the point at which this line cuts through the x-axis gave us the 
ability to construct a rough estimate for. The asymptote, denoted 
by "A," was computed by making use of the most recent data 
point. Because of the structure of the differential equation that 
makes up Huang's model, the solution to this equation must be 
found through the use of numerical methods. Through the 
application of the Runge-Kutta method, the differential equation 
was given a numerical solution. In order to find a solution to this 
issue, we consulted the ode45 solver in MATLAB (Version 
7.10.0499, The MathWorks, Inc., Natick, MA). 
 
Statistical analysis 
 
The ability of models with different numbers of parameters to 
account for the same set of experimental data was evaluated using 
a variety of methods, such as the corrected Akaike Information 
Criterion (AICc), the Root-mean-square error (RMSE), the bias 
factor (BF), the accuracy factor (AF), and the adjusted coefficient 
of determination (adjR2). We used equation (1) to calculate the 
root-mean-square error, where Obi stands for the experimental 
data, Pdi stands for the model-predicted values, n stands for the 
number of experimental data, and p stands for the number of 
parameters in the assessed model. For the model with fewer 
parameters, it is anticipated that the RMSE values will be lower 
[41]. 
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The R2 statistic, also known as the coefficient of 
determination, is used in linear regression to evaluate how well a 
model fits the data. However, using the R2 method in nonlinear 
regression does not readily produce comparable analyses because 
the number of parameters varies from model to model. This is 
one of the reasons why using the R2 method is not recommended. 
Calculating the quality of nonlinear models with equations 2 and 
3 and the updated R2 using the formula where is the total variance 
of the y-variable and RMS is the residual mean square is one way 
to tackle this problem. Another way to address this problem is to 
calculate the residual mean square. 
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Information Criterion of Akaike, often known as The 

Akaike Information Criterion (AIC) is what takes care of the 
trade-off between the complexity of the model and its goodness 
of fit. The AIC gives a solution to the problem of model selection 
[42], which it does by determining the relative quality of a 
statistical model for each collection of experimental data that is 
provided. In point of fact, it is founded on a body of knowledge 
known as "information theory." When a certain model is used to 
represent the process that generates the information or data in 
question, this method provides a rough estimate of the amount of 
data that is lost as a result of this choice. For any particular set of 
predicted results, the model that has the lowest value for the 
Akaike Information Criterion (AIC) will be the one that is most 
universally accepted by the scientific community. This is 
typically a negative number; for instance, a value of -10 is 
preferred above a value of -1 as an illustration of this preference. 
To put it another way, the AIC value will increase if there are 
more parameters because the result will be less desirable when 
there are more parameters. As a consequence of this, AIC not 
only promotes the use of a model that is less complex 
(underfitting) in order to accommodate experimental data, but it 
also rewards quality of fit. When there are fewer values to 
consider or more parameters to take into account, the Akaike 
information criterion (AIC) with correction (AICc) is utilized in 
place of the AIC [43]. We are able to calculate the AICc for each 
dataset and model by utilizing the formula that is provided below 
(Eqn. 4); 
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where n refers to the total number of points on the curve and 

p refers to the total number of parameters in the model. The 
strategy takes into consideration both the change in goodness-of-
fit as well as the variation in model parameters. The model that 
has the smallest value for the AICc statistic is the one that is most 
likely to be accurate for each dataset [43]. The Accuracy Factor 
(AF) and the Bias Factor (BF) (Eqns. 5 and 6) were also 
employed to measure the goodness-of-fit of the models. Both of 
these factors were first presented by Ross [44]. There is a perfect 
correlation between the values that were observed and those that 
were anticipated when the Bias Factor equals 1. Studies of 
microbial growth curves or Mo-blue production in which the bias 
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factor is less than 1 indicate a potentially unsafe model, whereas 
studies in which the bias factor is more than 1 indicate a safe 
model. The typical value of the Accuracy Factor is 1, and higher 
values suggest a less precise or accurate prediction than the 
average value. 
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RESULTS AND DISCUSSION 
 
There was a discernible increase in the amount of blue coloration 
after 50 h of static incubation. The Mo-blue production from this 
bacterium had the shape of a sigmoidal curve, with a lag period 
of around 15 h and attaining maximum Mo-blue production (Fig. 
1). The Mo-blue output vs. time profile was installed in a total of 
eight different automobiles. Produces an appearance that is 
agreeable to the eye (Fig. 2). The most recent revision of the 
logistics model yielded the best results, with the best adjusted R2 
value as well as the lowest RMSE and AICc values. Both the AF 
and BF of the model had values that were extremely close to 1.0, 
indicating that they were highly good. The Baranyi-Roberts 
model obtained the lowest possible results in the vast majority of 
statistical evaluations (Table 2). The updated logistics model 
coefficients for a variety of molybdenum concentrations are 
presented in Table 3, where they can be found. 

 
Fig. 1. Bacillus sp. strain khayat's Mo-blue production curves at different 
sodium molybdate concentrations over time. Mean SD from three 
independent measurements are shown as error bars. 
 

 
Fig. 2. After fitting to several different models, this is the Mo-blue 
production curve for Bacillus sp. strain khayat growing in 25 mM sodium 
molybdate. The following models were used in the study: Huang (HG), 
Baranyi-Roberts (BR), Buchanan (B3P), modified Logistics (ML), 
modified Richards (MR), von Bertalanffy (VB), modified Gompertz 
(MG), and modified Schnute (MS). 

Table 2. Statistical analysis of the various fitted models. 
 

Model p RMSE adR2 AF BF AICc 
Huang 4 0.0568 0.996 1.0270 0.9991 -59.50 
Baranyi-Roberts 4 0.1764 0.958 1.0774 1.0081 -27.79 
modified Gompertz 3 0.1666 0.964 1.0161 1.0003 -35.12 
Buchanan-3-phase 3 0.0729 0.993 1.0291 1.0013 -58.27 
modified Richards 4 0.0438 0.998 1.0178 0.9994 -66.79 
modified Schnute 4 0.1778 0.959 1.0178 0.9994 -27.58 
modified Logistics 3 0.0488 0.997 1.0228 0.9974 -69.50 
von Bertalanffy 3 0.0750 0.993 1.0363 0.9968 -57.46 

 
Note: 
p  no of parameters 
adR2 Adjusted Coefficient of determination 
RMSE Root Mean Square Error 
BF  Bias factor 
AF  Accuracy factor 
 

 
Fig. 3. The Mo-blue production curves of Bacillus sp. strain khayat were 
fitted using the modified logistics model. These curves were based on 
varied concentrations of sodium molybdate. 
 
Table 3. Mo-blue production coefficients at various molybdenum 
concentrations as modelled using the modified logistics model. 
 
 

 Molybdenum concentration 

 
5 

mM 
10 

mM 
15 

mM 
20 

mM 
25 

mM 
30 

mM 
35 

mM 
40 

mM 
50 

mM 
60 

mM 
70 

mM 
Asymptote 
(ln nmole 
Mo-blue) 3.14 3.664 4.047 3.65 3.203 2.863 2.863 3.053 2.234 2.185 2.618 
µm (h-1) 0.04 0.057 0.064 0.06 0.045 0.039 0.039 0.027 0.022 0.016 0.015 
Lag (h)  19.21 11.78 9.82 10.80 14.98 17.07 17.07 25.25 35.69 47.72 49.43 

 
The logistics model is amongst the first to be developed for 

modelling microbial growth. The growth rate according to the 
model is given by a differential equation as follows: 
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where the maximal specific growth rate, denoted by the 

letter m, can be calculated by taking the product of the initial 
population density, at time t (optical density), and the number of 
bacterial cells, expressed as CFU per milliliter. At the stationary 
phase, the value marked by the letter Amax represents the 
maximum population density of bacteria, also known as the 
optical density or CFU/mL. This limit is also referred to as the 
carrying capacity of the planet, which is a common statement. 
When the optical density of a population or the number of viable 
bacteria in a given volume of medium is very high, the term 1-
A/Amax in the logistics model inhibits growth. This happens when 
the optical density of a population is very high. When A is very 
small, as it is when the lag phase is occurring, the term is 
practically turned to one, and as a result, it has very little impact 
on the growth rate. At high population density (optical density) 
or bacterial cell number (CFU/mL), the value of A approaches 
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Amax, changing the term to virtually zero, which leads to a nearly 
zero growth rate at the stationary phase. This is the case because 
Amax is the maximum value of A. The sigmoid curve is the form 
that was produced as a result. Gibson et al. [45] made a number 
of modifications to the logistic model in order to make it 
compatible with the data on the development of bacteria. 

( )( )[ ]mtb
caA −−++= exp1log  

 
This is an example of an exponential function, and the a, c, 

b, and m parameters are as follows: The fact that the logistics 
model has been utilized to successfully imitate the growth of 
bacteria as well as the manufacturing of products derived from 
other organisms [46-48,48-50] is evidence that the logistics 
model is adaptable. The fitting technique resulted in the 
calculation of three parameters: specific reduction rate (h-1),  Lag 
period (h), and maximum Mo-blue production (nmole Mo-blue). 
Utilizing models such as the two-parameter Monod model or 
other, more advanced "secondary models" such as Haldane, 
Aiba, Yano, and others would allow secondary modeling of Mo-
blue synthesis to take use of these physiologically significant 
coefficients. The purpose of the mechanistic models that are used 
in fundamental research is to gain a deeper understanding of the 
underlying physical, chemical, and biological processes that are 
responsible for the observed growth profile. If we make the 
assumption that all other parameters are the same, mechanistic 
models are preferable to other types of models because they offer 
information about the underlying mechanisms that are 
responsible for observable patterns. When their applicability is 
projected beyond the current circumstances, the likelihood of 
their being correct increases [51]. 
 
CONCLUSION 
 
It was determined through a series of statistical tests or error 
function analysis such as root-mean-square error, adjusted 
coefficient of determination, bias factor, accuracy factor, and 
corrected Akaike information criterion, that the logistics model 
accurately modelled Mo-blue production curve from the 
bacterium Bacillus sp. strain khayat. A review of the relevant 
literature indicates that the parameters obtained from the fitting 
exercise will be of great use in the subsequent development of 
the secondary model, which will be innovative not only for the 
conversion of molybdenum to Mo-blue but also for the 
detoxification of heavy metals in general. As part of the 
secondary modeling of Mo-blue production from this bacterium, 
the modeling of the inhibitory influence of the substrate 
molybdenum on the maximum Mo-blue production rate values 
derived from this work is currently under progress. In addition to 
modeling other parameters, such as the influence of 
environmental variables, modeling is being done on Mo-blue 
production rates (pH and temperature). 
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