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INTRODUCTION 
 
For at least 2,000 years, molybdenum was mistaken for graphite 
and galena by ancient cultures, but it wasn't until 1778 that the 
metal's formal discovery and identification was made by Swedish 
chemist and pharmacist Carl Wilhelm Scheele that molybdic 
oxide was formally discovered and identified. Hjelm, a Swedish 
chemist, made the first metallic molybdenum in 1781 by heating 
a paste made of molybdic oxide and linseed oil in a crucible to 
extremely high temperatures. German chemist Bucholtz and 
Swede Jöns Jacob Berzelius both worked on the molybdenum 
chemistry in the 1800s, but it wasn't until 1895 that French 
scientist Henri Moissan reduced molybdenum with carbon in an 
electric furnace to produce a chemically pure (99.98%) metal that 
allowed for further study of the metal and its alloys [1–3]. 

 
 
At low concentrations, toxic xenobiotics can be removed by the 
process of bioremediation, which, over the course of time, proves 
to be more cost-effective than other methods, such as physical or 
chemical treatments. Molybdenum is one of the necessary heavy 
metals that are only needed in minute quantities, but in higher 
concentrations it may be poisonous to a wide variety of different 
creatures. It has a wide variety of applications in industrial 
settings, some of which include acting as an alloying agent, an 
anti-freeze component, a corrosion-resistant steel component, 
and a lubricant in the form of molybdenum disulfide. The 
extensive usage of molybdenum in industry has led to a variety 
of water pollution problems occurring all over the world. Some 
of these instances include Tokyo Bay, Austria's Tyrol, and the 
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 ABSTRACT 
Millions of tonnes of these chemicals are manufactured each year and a large quantity is 
determined to be contaminating the environment, making them important worldwide pollutants. 
The fact that they pollute the environment is a major problem on a worldwide scale. There is a 
continuing search for bioremediation of these contaminants employing bacteria capable of 
numerous detoxifications. Analysis of the bacterium yielded a preliminary identification of the 
organism as Pseudomonas aeruginosa Neni-4. Screening for the capacity of molybdenum-
reducing bacteria to decolorize different polyphenols was conducted in this study. Reduction was 
optimum at pH 6.3 and between 25 and 40 oC. The bacterium used glucose as the best carbon 
source or molybdenum reduction followed by galactose, 2-ketogluconate, and citrate in 
decreasing order. Phosphate between 5.0 and 7.5 mM and sodium molybdate between 15 and 20 
mM maximally supported reduction. Like earlier Mo-reducing bacteria, a reduction of 
phosphomolybdate is seen in the absorption spectra of the Mo-blue generated. Heavy metals 
prevented molybdenum reduction. None of the phenolic compounds can reduce molybdenum 
when provided as sole carbon sources. In contrast, the bacterium was able to grow on phenol, 
benzoate, salicylic acid, and catechol, all of which are substances that include phenolic 
components. A significant bioremediation technology is this bacterium's capacity to metabolise 
molybdenum and thrive on poisonous phenolics. 
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Black Sea, all of which have molybdenum levels that may 
approach hundreds of parts per million (ppm) [4,5]. In the 1970s, 
it was also demonstrated that it was a substantial pollutant in 
sewage sludge pollution on land. This discovery came about 
during that decade. It has been demonstrated that even at 
concentrations as low as a few parts per million, molybdenum 
may inhibit the development of embryos and delay the process of 
spermatogenesis in various species, including catfish and mice 
[6,6–9]. In addition, molybdenum is extremely hazardous to 
ruminants, particularly cows, at levels of several parts per 
million. [10,11].  
 
Hydrocarbons, such as oil, grease, and phenolics, rank first 
among the scheduled industrial wastes, just behind heavy metals. 
[12]. Accidents are another source of pollution. For example, the 
capsize of the 533-ton Indonesian tanker MV Endah Lestari in 
2001, which was carrying 18 tonnes of fuel and 600 tonnes of 
phenol, contaminated Indonesian and Malaysian coastal waters 
and killed thousands of fish and cockles raised in 85 offshore 
cages [13].  In addition to being harmful to humans, phenol and 
phenolic compounds are also dangerous for many other creatures. 
[14]. The mucous membranes, skin, eyes, and respiratory tract 
are caustic to their vapours. A third-degree burn can result from 
prolonged skin contact with dermatitis. The liver and kidneys can 
be damaged as a result of long-term exposure. Hydrophobicity 
and the production of phenoxyl radicals contribute to the 
substance's toxicity [15]. It's well-known that it pollutes the 
world. There are various coal mines in Sumatra that might be a 
source of phenolic pollution [16]. 
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Fig. 1. The structure of some toxic phenolic compounds. 
 

A wide range of microorganisms are capable of degrading a 
selection of xenobiotics and removing heavy metals 
simultaneously, and their adaptability is highly sought after in 
contaminated areas. A few examples are the decrease of chromate 
and the biodegradation of phenols [17,18]. This study examines 
the capability of a newly isolated Mo-reducing bacterium 
isolated from polluted soil to thrive on a wide range of phenolic 
chemicals, including phenol, in the presence of several 
antibiotics. Because most bioremediation takes place in water or 
soil with environmental oxygen EO concentrations lower than 
20% EO and other acceptors such as nitrate started to be used. 
We purposefully employ static growth or circumstances, and this 
may be easily accomplished in a microplate environment with 
lower oxygen concentrations than aerobic conditions (0.10 
percent environmental oxygen, or EO). In this paper, we present 
a newly discovered molybdenum-reducing bacterium that has the 
ability to flourish on a wide variety of phenolic compounds that 
may be found in contaminated soil and that we were able to 
isolate. Both the heavy metal molybdenum and phenolic 
compounds might be remedied using this bacterium's properties. 
 
 
 
 

MATERIALS AND METHODS 
 
Isolation of Mo-reducing bacterium 
In January 2009, soil samples were gathered from a polluted site 
in the Indonesian state of Pariaman, Sumatera (5 cm deep from 
the topsoil) by the late Dr Neni Gusmanizar. Soil was mixed with 
sterile tap water to create a suspension. After incubating at room 
temperature for 48 hours, the soil suspension was transferred 
onto agar plates that contained low-phosphate medium (pH 7.4). 
These were the components of the low phosphate medium: 
glucose (1%), (NH4)2.SO4 (0.3%), MgSO4.7H2O (0.05%), 
yeast extract (0.5%), NaCl (0.5%), Na2MoO4.2H2O (0.242 
percent or 10 mM), and Na2HPO4 (0.071 percent or 5 mM) [19]. 
Molybdate reduction is shown by the production of blue colonies. 
Pure culture was obtained by isolating and reseeding the colony 
that produced the most intense blue colour. Molybdenum 
reduction in liquid medium above (at pH 7.0) was carried out in 
a 250 mL shake flask culture carried out at room temperature for 
an incubation period of 48 h and shaken on an orbital shaker set 
at 120 rpm. The phosphate concentration was raised to 100 mM. 
Centrifuged at 10,000xg for 10 minutes at ambient temperature, 
the molybdenum blue (Mo-blue) absorption spectra of the liquid 
culture above were investigated. A UV-spectrophotometer was 
used to scan the growth medium supernatant from the 
wavelengths of 400 to 900 nm (Shimadzu 1201). It was used as 
the baseline adjustment for the low phosphate medium. 
 
Partial identification of the isolated strain 
A variety of standard methods were used to determine the strain's 
biochemistry and phenotype, including colony shape, gramme 
staining, the size and colour of the agar colonies, motility, 
oxidase activity (for 24 hours), arginine dihydrolase (ADH), 
ONPG (beta-galactosidase), catalase activity (for 24 hours), 
ornithine decarboxylase (ODC) and lysine decarboxylase [20]. 
Bacterial identification was carried out using the ABIS online 
system [21] as before [22]. 
 
Preparation of bacterial resting cells  
The effects of pH, phosphate, temperature, and sodium 
molybdate concentrations on molybdenum reduction to Mo-blue 
were studied statically employing the resting cells form in a 
microplate or microtiter format, as had been described earlier 
[23].  Growth was carried out on an orbital shaker at room 
temperature and shaken at 120 rpm in a 1-L overnight culture in 
High Phosphate medium (HPM). The phosphate content was set 
at 100 mM for the HPM. Centrifuged at 15,000 x g for 10 min 
and then the bacterium was washed of its pellet several times 
using sterile deionized water and then the bacterial cells were 
resuspended in LPM without the addition of glucose to a cellular 
suspension having an absorbance values of about 1.00 when 
measured at 600 nm, and then resuspended in 20 ml of LPM. All 
of the Mo-reducing bacteria that have been identified so far thrive 
best on low phosphate media at a concentration of 5 mM 
phosphate, so that's what we utilised here. Molybdate reduction 
was shown to be severely inhibited at higher doses [19,24–38]. 
Then each well of a sterile microplate was filled with 180 uL of 
sterile solution. Each well received 20 uL of sterile glucose from 
a stock solution, which sparked the creation of Mo-blue. The tape 
was sealed with Corning® microplate, a sterile sealing tape that 
enables gas exchange. The microplate was kept at room 
temperature during the incubation process. A BioRad 
(Richmond, CA) Microtiter Plate reader was utilized to measure 
absorbance at 750 nm at predetermined intervals (Model No. 
680). 
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Effect of heavy metals on molybdenum reduction 
Seven heavy metals, including lead, arsenic, copper, mercury, 
silver, chromium, and cadmium, were obtained from commercial 
salts or MERCK standard solutions. At various concentrations, 
the bacterium was exposed to heavy metals in a microplate 
format. At the same wavelength of 750 nm as previously, the 
quantity of Mo-blue was measured. 
 
Screening of molybdenum reduction and independent 
growth using phenolics  
Molybdenum reduction using various phenolic compounds as 
electron donors was tested using phenolic compounds at the final 
concentration of 200 mg/L in a volume of 50 uL [39]. Then 200 
uL of the medium (LPM) was added into the microplate wells 
with 50 L of resting cells suspension. It was cultured for three 
days at room temperature, and Mo-blue production was measured 
at 750 nm as before. Using phenolics as a carbon source for 
growth only, rather than for Mo-reduction, a second set of 
experiments was carried out. The pH of the media was brought 
up to 7.0. At 600 nm, the bacterial growth rate increased. 
 
Statistical analysis 
In order to do the data analysis, GraphPad Prism version 7.0 (trial 
version) was employed. Analysis of variance with post-hoc 
Tukey's test or Student's t-test were used to compare groups. The 
significance level was set at p0.05. 
 
RESULTS AND DISCUSSION 
 
Identification of molybdenum reducing bacterium 
The bacterium shows properties such as being Gram-negative, 
was motile, and was a short rod-shaped organism. Identification 
of the bacterium was carried out by culturing, morphological, and 
biochemical assays (Table 1). The ABIS online software  [21] 
programme provided three choices for the bacterial 
identification, with Pseudomonas aeruginosa having the highest 
homology (99 percent) and accuracy (88 percent). Molecular 
identification techniques based on the comparison of the 
16srRNA gene will be required in the future to identify this 
species further. In honour of the late Dr. Neni Gusmanizar, the 
bacterium is now provisionally named as Pseudomonas sp. strain 
Neni-4. Examples of Mo-reducing bacteria from this genus are 
Pseudomonas sp. strain DRY2 [31] and the Antarctic bacterium 
Pseudomonas sp. strain DRY1 [35] that have been reported 
previously.  
 
Table 1. Biochemical tests for Pseudomonas sp. strain Neni-4. 

 
 

In this study the microplate format was employed to expedite 
characterization work and collect more data than the 
conventional shake-flask technique [23,40]. Ghani et al. initiated 
the use of resting cells under static circumstances to study 
bacterial molybdenum reduction [25].  
 
Molybdenum absorbance spectrum 
The identification of the Mo-blue is difficult because to its 
complicated shape and several species. Mo-blue is a reduction 
compound of isopolymolybdate and heteropolymolybdate, two 
types of molybdenum complexes. The identification of the Mo-
blue compound is tricky because it has an intricate structure and 
exists in many species. It has been suggested by Campbell et al. 
[24] that Mo-blue, which was detected during the reduction of 
molybdenum by E. coli K12, is phosphomolybdate in its reduced 
form, although no credible explanation was provided.  
 

Due to the need for powerful reducing agents and acidic 
circumstances, biologically based reducing agents cannot 
produce isopoly Mo-blue. Heteropoly Mo Blue synthesis by 
biologically-based reductants, such as ascorbic acid or enzymatic 
reduction, is more likely to occur than the ascorbic acid-based 
phosphate determination technique. (Hori et al., 1988). In other 
words, molybdenum is reduced to Mo-blue by both chemical and 
biological processes. 
 
If this technique is used, the absorption spectra of the Mo-blue 
that is produced by this bacterium should display a spectrum that 
is very similar to the one produced by the method used to 
determine phosphate. To be more specific, the spectra that was 
seen had a maximum absorption in the range of 860 to 870 nm 
and a shoulder at around 700 nm (Fig. 2). The Mo-blue spectrum, 
which was obtained using the phosphate determination 
technique, typically exhibited a maximum absorption in the range 
of 880 to 890 nm and a shoulder in the range of 700 to 720 nm 
[41].  
 

Previous research has demonstrated that the entirety of the 
Mo-blue spectra produced by other bacteria conform to this 
criterion. In this study, the result from the absorption spectrum 
unmistakably suggests a spectrum that is comparable, which 
consequently gives proof that the hypothesis is correct. Because 
of the intricate nature of the compound's structure, n.m.r. and 
e.s.r. must be utilized in order to arrive at an accurate 
identification of the phosphomolybdate species [42].  
 

On the other hand, spectrophotometric characterisation of 
heteropolymolybdate species, which involves examining the 
scanning spectroscopic profile, is an approach that is less 
laborious and more widely recognized [43–46]. Although the 
highest wavelength for Mo-blue absorption was 865 nm, 
measurements at 750 nm were adequate for normal Mo-blue 
production monitoring because the intensity achieved was much 
greater than cellular absorption at 600-620 nm. Despite the fact 
that the reading at 750 nm was around 30% lower, this was the 
case. Earlier measurements of Mo-blue production used 
wavelengths such as 710 nm.[25] and 820 nm [24]. 
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Fig. 2. Scanning absorption spectrum of Mo-blue from Pseudomonas sp. 
strain Neni-4 at different time intervals. 
 
Effect of pH and temperature on molybdate reduction 
Pseudomonas sp. strain Neni-4 was subjected to an incubation 
process at several pH levels, spanning from 5.5 to 8.0, utilizing 
Bis-Tris and Tris.Cl buffers (20 mM). According to the findings 
of an ANOVA study, the optimal range for pH throughout the 
reduction process was between 6.0 and 6.5. When the pH was 
lower than 5, there was a significant inhibition of reduction (Fig. 
3).  The influence of temperature (shown in Fig. 4) was seen 
throughout a wide range of temperatures, from 20 to 60 degrees 
Celsius; the optimal temperature ranged from 30 to 37 degrees 
Celsius. ANOVA analysis revealed that there was no significant 
difference (p>0.05) between the values that were recorded. 
Temperatures higher than 37 degrees Celsius have a significant 
negative impact on the formation of Mo-blue from Pseudomonas 
sp. strain Neni-4.  
 

The rate of an enzyme-catalyzed reaction increases as the 
temperature rises, as is the case with many chemical processes. 
Nevertheless, at high temperatures, the enzyme denatures and 
ceases to operate, so the rate decreases again. The rate of enzyme 
activity increases in direct proportion to the rise in temperature. 
It is at this temperature that the enzyme's optimal activity is 
achieved. With each subsequent rise in temperature, the enzyme's 
active region changes its shape, resulting in a rapid decline in 
activity and enzymes denaturation. The active site shape of an 
enzyme can also be altered by pH changes. The optimal pH for 
each enzyme varies. For an enzyme, the ideal pH relies on the 
environment in which it performs its function. Small intestine 
and stomach enzymes have different pH optimums, for example. 
In this case, the enzyme's optimal pH of 8 results in maximum 
activity. As the enzyme's active site changes shape due to the 
increased pH, its activity plummets dramatically [47,48]. 

 
Fig. 3.  Molybdenum reduction at various pHs Data is mean ± standard 
deviation of triplicates.  

 
Fig. 4.  Molybdenum reduction at various temperatures. Data is 
mean ± standard deviation of triplicates.  
 

Temperature and pH affect folding of proteins and enzyme 
activity, which can lead to the suppression of molybdenum 
reduction, which is an enzyme-mediated process. Molybdenum 
reduction, on the other hand, necessitates the presence of both of 
these elements. In a country like Malaysia, where the yearly 
average temperature is between 25 and 35 degrees Celsius, 
having the optimal conditions for bioremediation would be 
advantageous [27]. As a result, Pseudomonas sp. strain Neni-4 
has the potential to be a candidate for molybdenum soil 
bioremediation not only in the immediate area but also in other 
tropical nations. The ideal temperature for the most majority of 
the reducers is anywhere between 25 and 37 degrees Celsius. 
[19,27,28,30–34,36–38,49] since they have been isolated from 
tropical soils, with the exception of the lone psychrotolerant 
reducer, which has been isolated from Antarctica and shows that 
the best temperature for sustaining reduction is between 15 and 
20 degrees Celsius [35]. 
 

As a neutrophil, the optimal pH range for molybdenum 
reduction by Pseudomonas sp. strain Neni-4 may be seen in the 
bacteria. At contrast to other organisms, neutrophils are able to 
thrive in a pH range of 5.5 to 8.0. For the best molybdenum 
reduction in bacteria, an acidic pH of between 5.0 and 7.0 is ideal. 
This is an important finding on bacteria's molybdenum reduction 
[24,25,27–38,49]. In the past, it has been hypothesized that an 
acidic pH plays a significant part in the synthesis and stability of 
phosphomolybdate before it is reduced to Mo-blue. This notion 
has been supported by evidence. Therefore, the best reduction is 
achieved by striking a balance between the activity of the enzyme 
and the stability of the substrate [50]. 
 
 
Effect of electron donor on molybdate reduction 
To support molybdate reduction, glucose was found to be the best 
electron donor among those that were tested followed by sucrose, 
adonitol, mannose, mannitol, myo-inositol, maltose, glycerol, d-
sorbitol, salicin, trehalose, and xylose. Finally, xylose was found 
to be the worst electron donor (Fig. 5). Molybdenum reduction 
could not occur with the use of other carbon sources. Nearly all 
Mo-reducers utilize glucose as the best electron donor 
[19,27,28,30–34,36–38,49]. Glucose is processed through 
glycolysis, the Kreb's cycle, and the electron transport chain, 
producing NADH and NADPH that are substrates for 
molybdenum reduction [49,51].  
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Fig. 5. Molybdenum reduction at various carbon sources. Data is mean ± 
standard deviation of triplicates.  
 
Reduction at various phosphate and molybdate 
concentrations 
It is vital to determine the amounts of phosphate and molybdate 
that enable effective molybdenum reduction since it has been 
demonstrated that both phosphate and molybdate hinder the 
synthesis of molybdenum blue in bacteria [24,25,27–38,49,52–
57]. Phosphate was shown to be most effective at a concentration 
of 5 millimoles per liter (mM), with greater quantities being 
highly reduction-inhibitory (Fig. 6). It was hypothesized that a 
high concentration of phosphate might hinder phosphomolybdate 
stability due to the fact that the complex demands acidic 
conditions, and the stronger the buffering capacity of the 
phosphate buffer, the higher the concentration of phosphate that 
is utilized. In addition to this, the phosphomolybdate complex is 
inherently unstable if exposed to high levels of phosphate via a 
process that is not well understood [43,44,58].  
 

For optimum reduction, each and every molybdenum-
reducing bacteria that has been discovered up to this point 
requires a phosphate concentration of no more than 5 mM 
[24,25,27–38,49,52–57]. According to research conducted on 
how the concentration of molybdenum affected the process of 
molybdenum reduction, the newly isolated bacterium tolerate 
and reduce molybdenum even at 60 mM, but at the expense of a 
reduction in Mo-blue synthesis. The most effective decrease was 
achieved at concentrations between 20 and 40 mM (Fig. 7). 
Reduction at this level is shared by many reducers [19,27,28,30–
34,36–38,49]. 

 
Fig. 6. Molybdenum reduction at various phosphate concentrations. Data 
is mean ± standard deviation of triplicates.  
 
 

 

 
Fig. 7. Molybdenum reduction at various molybdenum concentrations. 
Data is mean ± standard deviation of triplicates.  
 
Effect of heavy metals 
Molybdenum reduction was inhibited by Pb (II), Hg (II), Cd (II), 
Cu (II) and Ag (I) at 2 ppm by 64.3, 61.1, 53.1, 36.8 and 27.7 %, 
respectively (Fig. 8). Bioremediation is complicated by the 
inhibitory effects of other metal ions especially heavy metals. 
This necessitates the screening and extraction of metal-resistant 
microorganisms. Molybdate reduction is inhibited by mercury, as 
previously indicated. A review of the heavy metals that inhibited 
Mo-reducing bacteria found that hazardous metals inhibited 
nearly all of the reducers [59]. Heavy metals usually target 
sulfhydryl group of enzymes [60]. Nearly all of the Mo-reducing 
bacterium isolated to date are affected strongly by heavy metals 
[24,25,27–38,49,52–57].  

 
Fig. 8. Molybdenum reduction in the presence of various heavy metals. 
Data is mean ± standard deviation of triplicates.  
 
Phenolics as potential sources of electron donors for the 
reduction of molybdenum and for independent growth 
The use of phenolics as electron donors to assist molybdenum 
reduction did not provide any favorable findings in the screening 
process. Nevertheless, the bacterium as able to cultivate on 
phenolic chemicals such as phenol, benzoate, salicylic acid, and 
catechol (Fig. 9). Bacteria capable of decomposing phenol and 
phenolics are ideally suited for use in phenol cleanup due to cost 
considerations. Research into the microorganisms that are 
responsible for the biodegradation of phenol and other phenolic 
compounds has been going on for a very long time all over the 
world. Bacteria that could degrade phenol and phenolic 
compounds include Pseudomonas spp. [61–64], Bacillus brevis 
[65], Alcaligenes sp. [66], Ochrobactrum sp. [67], Acinetobacter 
sp. [68,69] and Rhodococcus species [70]. Every one of these 
degraders possesses a one-of-a-kind set of characteristics, such 
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as the capacity to withstand high concentrations of phenol, 
resistance to salt and heavy metals, and the capability to thrive in 
environments with either severe pH levels or temperatures. 
Bioremediation is the preferred method of phenol degradation 
because there are numerous microorganisms that are capable of 
breaking down phenol. According to the findings, this bacterium 
could be an effective bioremediation agent for polluted sites that 
are also contaminated with heavy metals and xenobiotics. Phenol 
degradation and heavy metal detoxification are two things that 
relatively few microorganisms have been shown to be capable of. 
 

 
Fig. 9. Growth of Pseudomonas sp. strain Neni-4 on xenobiotics 
independent of molybdenum reduction. Error bars represent mean ± 
standard deviation (n = 3). 
 
CONCLUSION 
 
The phenolic chemicals phenol, benzoate, salicylic acid, and 
catechol have been successfully degraded by a Mo-reducing 
bacterium that was isolated locally in Indonesia and has the 
unique capacity to biodegrade these compounds. The ideal 
conditions for the bacteria to convert molybdate to Mo-blue are 
a pH of 6.3 and temperatures ranging from 25 to 40 degrees 
Celsius. In order of decreasing effectiveness, the electron donor’s 
fructose, galactose, 2-ketogluconate, and citrate were used to 
assist molybdate reduction. Glucose was shown to be the most 
effective electron donor. A phosphate content of between 5.0 and 
7.5 mM and a molybdate concentration of between 15 and 20 mM 
are two additional conditions that must be met. The Mo-blue that 
was created had an absorption spectrum that was comparable to 
that of a prior Mo-reducing bacteria and was strikingly similar to 
that of a reduced phosphomolybdate. At a concentration of 2 
ppm, the reduction of molybdenum was blocked by heavy metals. 
The use of phenolics as electron donors to assist molybdenum 
reduction did not provide any favorable findings in the screening 
process. In spite of this, the bacterium was able to cultivate itself 
on phenol, benzoate, salicylic acid, and catechol—all of which 
are phenolic chemicals. The capacity of this bacteria to detoxify 
numerous toxicants is a desirable quality, and as a result, the 
bacterium is an essential instrument for bioremediation. At the 
moment, efforts are being made to purify the molybdenum-
reducing enzyme that was produced by this bacterium as well as 
to describe research on the biodegradation of phenolics in greater 
detail. 
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