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INTRODUCTION 
 
Azo dyes are the most common and versatile synthetic dyes used 
in the textile industry, accounting for more than half of all 
synthetic dyes manufactured each year [1]. Depending on the 
number of azo groups, azo dyes are classed as diazo dyes (brown 
2, reactive brown 1, acid black 1, amido black), mono azo dyes 
(reactive yellow 201, acid orange 52, disperse blue 399), poly azo 
dyes (direct red 80) and tris azo dyes (direct black 19 and direct 
blue 78,) [2]. Azo dyes are characterized as reactive, dispersion, 
direct, cationic, anionic, and metalized azo dyes1 based on their 
application [3]. They're the only azo dyes that can bind covalently 
to cellulosic fibre and are widely used in the textile industry." 
They are very water-soluble and non-degradable in the normal 
aerobic conditions seen in biological treatment systems because 
of their strong sulphonation [4]. There are several -SO3H- group 

dyes in industrial effluents that are sulfonated azo dyes. Anti-
degradation properties are seen in the vast majority of azo dyes. 
Chemically, the dyes are poisonous and inert due to the presence 
of sulfo and azo groups, which aren't found in nature [5]. 
 

Without proper treatment, dyes can stay in the environment 
for long periods of time, posing a threat not only to aquatic plants' 
photosynthetic processes, but also to all living organisms, as their 
breakdown can result in carcinogenic compounds [6]. Allergenic, 
carcinogenic, mutagenic, and teratogenic in humans, these 
compounds bioaccumulate in the environment. When dyes are 
released into the water, they reduce the concentration of 
dissolved oxygen, which leads to the death and putrefaction of 
aquatic organisms. In recent years, bioremediation has been 
recognised as a successful, specific, less energy-intensive, and 
ecologically friendly technology since it results in stable, 
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 ABSTRACT 
The well function of aquatic and soil organisms including terrestrial, as well as those of all other 
living things, can be jeopardized if dyes aren't properly treated, as their degradation might lead 
to carcinogenic chemicals. Complete mineralization of dye is the only option, and this can be 
done using microorganisms. The azo blue dye inhibitory effect to its biodegradation by 
Streptomyces DJP15 was modelled using several inhibition kinetic models such as Haldane, 
Monod, Luong, Aiba, Teissier-Edwards, Han-Levenspiel and Yano. The result shows that only 
the Luong model failed to fit the data. The rest of the models visually ft the data although data 
fitting is problematic with datapoints of less than 10, which the result in this work demonstrates 
where it is not easy to choose the best model where nearly all of the models fit the data in a similar 
manner. Resorting to statistical discriminatory function, the best model was Monod with the 
smallest RMSE and AICc values and the highest adjR2 values and values for AF and BF close to 
unity. However, Monod has only two parameters and is the most robust. The Monod’s parameters 
were maximum specific degradation rate of 0.431 (1/h) (95% confidence interval from 0.391 to 
0.456) and concentration of substrate giving half maximal rate or Ks value of 0.0001 (mg/L) (95% 
C.I. from -0.01 to 12.12). The confidence interval value for the Ks value was very large indicating 
poor data quality. This should be an important consideration in future works where the data point 
number can be increased to improve model fitting exercise. 

KEYWORDS 
 
Azo blue dye 
Biodegradation 
Streptomyces 
Substrate inhibition model 
Monod 
 

 

 
BULLETIN OF ENVIRONMENTAL SCIENCE & 

SUSTAINABLE MANAGEMENT 
 

Website: http://journal.hibiscuspublisher.com/index.php/BESSM/index 
 

BESSM VOL 5 NO 5 2021 
49C Docked Plasmepsin IV 

https://doi.org/10.54987/bessm.v5i2.651
mailto:garbauba@jigpoly.edu.ng


BESSM, 2021, Vol 5, No 2, 28-32 
DOI: https://doi.org/10.54987/bessm.v5i2.651 

 

- 29 - 
 

harmless end products by partially or completely bioconverting 
pollutants. The goal of microbial bioremediation is to increase 
the natural degrading capacity of microorganisms [7]. 
 

The use of microorganisms in biodegradation is growing in 
popularity since it is a low-cost, ecologically friendly technology 
that generates less sludge and yields non-toxic finished products. 
Azo dyes may be decolored by a variety of microorganisms, 
including bacteria, fungi, actinomycetes, and algae. 
Microorganism decolorization activity is strongly influenced by 
environmental circumstances. As pH and temperature increase, 
the stability of the enzyme system that degrades dyes may be 
altered, resulting in diminished decolorization activity, which 
may have an impact on the strain's survival. Different 
environmental factors, such as carbon supply, nitrogen source, 
dye concentration, aeration and temperature as well as pH and 
the incubation duration affect the bacteria's ability to decolorize 
[8–17]. Dye biodegradation by microorganisms is subjected to 
the toxicity of the dye or the dye metabolite itself which require 
the inhibitory effects to be analyzed using mathematical models 
such as Haldane, Aiba and Luong [18–21]. 
 

Comparing and contrasting the models based on openly 
available data is the purpose of this study, which aims to 
undertake more thorough modelling and answer which models 
may be used based on statistical reasoning. As a result of these 
new findings, researchers will be able to explore new information 
and enhance their prior findings. The goal of this study is to 
improve the process parameters for successful degradation of 
Azo blue using a secondary modelling technique by streptomyces 
DJP15. 
 
 
MATERIALS AND METHODS  
 
Acquisition of Data 
Web Plot Digitizer 2.5[22] was used to digitise scanned plots into 
tables of data with sufficient precision before the data could be 
handled electronically. A previously published data [3], from 
Figures 2 which shows the degradation of Azo blue by 
streptomyces DJP15 at different concentrations were used in this 
study. 
 
Fitting of the data  
Curve Expert Professional software was used to fit the nonlinear 
models to the azo dye degradation data using nonlinear 
regression and a Marquarsdt approach that minimizes the sums 
of squares of the difference between observed and fitted data, 
which is the residuals (Version 1.6). Calculation of initial values 
is automated by looking for the sharpest rise in the curve four 
four data points (estimation of mmax), and the cross of the line 
with the x-axis (which estimates the lag period or lambda), and 
by exploitation the final data point as an assessment to determine 
the maximum or asymptote (A). 
 
Statistical analysis  
An experiment was used to compare the quality of models with 
various numbers of parameters, and data were analysed using 
numerous statistical approaches including adjusted coefficient of 
determination (adjR2), the Root Mean Square Error (RMSE), bias 
factor (BF), accuracy factor (AF), and AICc, which is a corrected 
form of the original Akaike Information Criterion (AIC) to see if 
a statistically significant difference existed (Akaike Information 
Criterion) [23]. The RMSE was calculated according to Eq. (1), 
where predicted values are Pdi and obserbed values are Obi. The 
no of datapoints are n while the no of parameter is p. It is expected 

according to theory that the model with the smaller number of 
parameters will give a smaller RMSE value [24].   
 

RMSE = 
�∑ (𝑝𝑝𝑝𝑝𝑝𝑝−𝑂𝑂𝑂𝑂𝑝𝑝)2𝑁𝑁

𝑖𝑖=1

𝑛𝑛−𝑝𝑝
………………. (1) 

 
Linear regression models employ the coefficient of 

determination, or R2, to evaluate the model's fit. Nonetheless, if 
the number of parameters differs between models in a nonlinear 
regression, the technique fails to provide comparable analyses. 
For nonlinear models, the R2 formula is adjusted to include RMS, 
which is the residual mean squared error and S2y is the total 
variance of the Y-variable.  

 
Adjusted (R2) = 1− 𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅2𝑦𝑦
…………… (2) 

 
Adjusted (R2) =  1 − (1−𝑅𝑅2)(𝑛𝑛−1)

𝑛𝑛−𝑝𝑝−1
   ………………. (3)  

 
If you want to know how well your statistical model fits the 

data, you may use the Akaike information criterion (AIC). The 
higher the AIC score, the less desired the outcome or the more 
parameters are incorporated in the computation. Overfitting is 
encouraged and discouraged by AIC, which favours the 
employment of a more complex model for fitting scientific 
results. Since the amount of data in this study is little in 
comparison to the number of parameters used, the Akaike 
information criterion (AIC) with correction (AICc) is used 
instead of the corrected version of AIC [25].  
 
Table 1. Various mathematical models developed for growth kinetics 
involving substrate inhibition.  
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Table 2. Statistical analysis of kinetic models (p is parameter).  
 
Model p RMSE adR2 AICc BF AF 
Yano 4 0.0311 0.954 23 1.001 1.035 
Tessier-Edward 3 0.0895 0.689 -4 0.988 1.135 
Aiba 3 0.0270 0.970 -21 1.001 1.035 
Haldane 3 0.0270 0.970 -21 1.001 1.035 
Monod 2 0.0241 0.977 -37 1.001 1.035 
 
RESULTS AND DISCUSSION 
 
Modified Gompertz, modified logistics, Huang, Buchanan–three 
phase, and Baranyi and Roberts models are one of the most used 
main models because they correctly simulate bacteria's 
development under [26–29].In spite of this, primary modelling is 
rarely utilised in the growth of bacteria on xenobiotics or in the 
enzymatic process of xenobiotic elimination. To better 
understand the impact of environmental factors on bacterial 
growth and metabolism, we do further model-based research. 
Microbes thriving on xenobiotics like phenol or catechol are 
inhibited by secondary models such as the Haldane, Aiba, and 
Yano. There are a large number of models that may be classed as 
either empirical or mechanistic, but the most majority of them lie 
somewhere in between. Growing bacteria or doing things with 
bacteria often has an identifiable phase where the rate of growth 
begins at zero and increases to a maximum value (max) over a 
set time period, leading to a time delay (lag) [30–34]. 
 

As a result of this last phase, in which the rate of change 
decreases until it reaches zero, growth curves are said to be 
asymptotical (A). Most of the time, differences in development 
rates lead to a sigmoidal curve with a lag period that begins 
immediately after t = 0. The exponential step is distinguished by 
the presence of a static period, followed by a dying phase, and 
ultimately a rising phase. The maximum specific growth rate is 
an essential growth curve parameter that, together with the 
asymptotic value and the lag time, should not be disregarded 
while constructing a growth curve model (mm). This number is 
frequently utilised in the creation of secondary models, such as 
those examining the influence of substrate, pH product and 
temperature on an organism's growth rate. The result shows that 
only the Luong model failed to fit the data. The rest of the models 
visually ft the data although data fitting is problematic with 
datapoints of less than 10, which the result in this work 
demonstrates where it is not easy to choose the best model where 
nearly all of the models fit the data in a similar manner.  

 
Fig. 1. Fitting experimental data with the Haldane model. 
 
 
 
 

 
 

 
 
Fig. 2. Fitting experimental data with the Yano model. 
 
 

 
 
Fig. 3. Fitting experimental data with the Teissier model. 
 
 

 
 
Fig. 4. Fitting experimental data with the Aiba model. 
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Fig. 5. Fitting experimental data with the Monod model. 

 
Fig. 6. Fitting experimental data with the Han-Levenspiel model. 
 

The result shows that only the Luong model failed to fit the 
data. The rest of the models visually ft the data although data  
Resorting to statistical discriminatory function, the best model 
was Monod with the smallest RMSE and AICc values and the 
highest adjR2 values and values for AF and BF close to unity. 
However, Monod has only two parameters and is the most robust. 
The Monod’s parameters were maximum specific degradation 
rate of 0.431 (1/h) (95% confidence interval from 0.391 to 0.456) 
and concentration of substrate giving half maximal rate or Ks 
value of 0.0001 (mg/L) (95% C.I. from -0.01 to 12.12). The 
confidence interval value for the Ks value was very large 
indicating poor data quality. This should be an important 
consideration in future works where the data point number can 
be increased to improve model fitting exercise. 
 

The Monod model has found utility in modelling several 
microorganisms’ related substrate inhibition kinetics. Despite the 
fact that many various growths rate equations have been 
presented in the literature, only a few are now in use in the real 
world. To characterise the development of microorganisms in 
general, and hydrogen-producing bacteria in particular, the 
empirical Monod equation is by far the most commonly used rate 
expression to quantify their growth [35]. Vogel et al., [36] 
describe Monod model as the best to fit the stimulation of growth 
by the concentration of nutrients in Saccharomyces cerevisiae on 
glucose and Escherichia on lactose. However, the Monod model 
is used to simulate algae growth in the photobioreactor since it is 
commonly used to model the growth of single celled organisms  
in a carbon-constrained environment [37]. Because most studies 

on the effects of toxic substrates on microbial growth use toxic 
substrates like aromatic and halogenated hydrocarbons, it's safe 
to infer that at high concentrations, growth rate will be 
significantly impeded, and other non-fitting models like Tessier 
will fail. The Monod model has been used to forecast a range of 
bacterial growths on xenobiotics and has been widely used as a 
general-purpose model for understanding substrate inhibition 
kinetics. The highest concentration at which cultures can sustain 
shock doses is known as the inhibition constant (Ki). This is an 
extremely significant value. Literature search showed little 
mathematical modelling of the kinetics of dye degradation by 
microorganisms have been done with few examples exists [18–
21].  
 
CONCLUSION 
 
The dye inhibitory effect to its biodegradation by Streptomyces 
was modelled using several inhibition kinetic models. The result 
shows that only the Luong model failed to fit the data. The rest 
of the models visually ft the data although data fitting is 
problematic with datapoints of less than 10, which the result in 
this work demonstrates where it is not easy to choose the best 
model where nearly all of the models fit the data in a similar 
manner. Resorting to statistical discriminatory function, the best 
model was Monod with the smallest RMSE and AICc values and 
the highest adjR2 values and values for AF and BF close to unity. 
However, Monod has only two parameters and is the most robust. 
The Monod’s parameters were maximum specific degradation 
rate of 0.431 (1/h) (95% confidence interval from 0.391 to 0.456) 
and concentration of substrate giving half maximal rate or Ks 
value of 0.0001 (mg/L) (95% C.I. from -0.01 to 12.12). The 
confidence interval value for the Ks value was very large 
indicating poor data quality. This should be an important 
consideration in future works where the data point number can 
be increased to improve model fitting exercise. 
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