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INTRODUCTION 
 
Because of its extensive usage in industrial applications like as 
leather tanning, metallurgy, electroplating, and refractory 
chromium is one of the most harmful trace elements introduced 
into surface waters and ground waters. The rising number of 
studies published regarding chromium toxicity over the past ten 
years demonstrates the increasing number of attempts to show 
and remediate chromium-bearing pollution in the environment. 
Using standard procedures, such as chemical precipitation, ion 
exchange, membrane filtration, coagulation/flocculation, and 
electrochemical treatment, trace elements may be removed from 
wastewaters [1–5].  
 

These approaches, on the other hand, are inefficient and 
result in enormous amounts of waste production. Sorption 
technologies [6] are being considered as alternatives for the 
treatment of water polluted by metals. As the name implies, 
sorption is the process by which sorbate is transferred from its 
liquid phase to the surface of a sorbent. Different parameters, 
such as pH, temperature, the kind and quantity of sorbent used, 

starting metal concentration, ionic strength, as well as the 
presence of other pollutants, influence sorption efficacy. Physical 
(physiosorption) and/or chemical (chemisorption) interactions 
are formed between the sorbent and the sorbate in response to the 
attraction forces between the two. Whereas in the physiosorption 
process, the sorbate attaches to the sorbent surface by weak 
forces such as van der Waals forces [6–10]. 
 

The removal of trace elements from freshwater can be 
accomplished using a variety of sorbents, including 
nanomaterials with various forms of coating and chemical 
synthesis methods, as well as other approaches [11–16]. 
Nanomaterials, which are defined as materials and structures 
with a minimum size of 1-100 nm and a minimum thickness of 
1-100 nm, exhibit a wide range of mechanical, optical, magnetic, 
and chemical characteristics when compared to particles and 
macroscopic surfaces with a comparable thickness. These 
properties are highly reliant on the form, size, surface features, 
and internal structure of the particle, and they are distinguishable 
from those of macroscopic surfaces and particles of equivalent 
composition in that they are not dependent on these factors. 
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 ABSTRACT 
The widespread use of chromium in industrial applications such as leather tanning, metallurgy, 
electroplating, and refractory materials has resulted in it being one of the most harmful trace 
elements to be introduced into surface and ground waters. The sorption isotherm of chromium 
sorption onto calcium alginate nanoparticles were analyzed using three models—pseudo-1st, 
pseudo-2nd and Elovich, and fitted using non-linear regression. The Elovich model was the 
poorest in fitting the curve based on visual observation followed by the pseudo-1st order. 
Statistical analysis based on root-mean-square error (RMSE), adjusted coefficient of 
determination (adjR2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike 
Information Criterion), Bayesian Information Criterion (BIC) and Hannan–Quinn information 
criterion (HQC) that showed that the pseudo-1ST order model is the best model. Kinetic analysis 
using the pseudo-1st order model at 400 mg/L 4-BDE gave a value of equilibrium sorption 
capacity qe of 31.89 mg g-1 (95% confidence interval from 30.37 to 33.42) and a value of the 
pseudo-1st-order rate constant, k1 of 0.22 (95% confidence interval from 0.019 to 0.025). Further 
analysis is needed to provide proof for the chemisorption mechanism usually tied to this kinetic. 
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Moreover, the physical-chemical features of the fluid in which 
nanoparticles are absorbed or desorption are dependent on the 
sorption processes of nanomaterials, which should be considered 
while designing nanomaterials [17–19]. Whenever nanomaterials 
are used as sorbents for the removal of toxic elements from 
wastewater, they must meet a number of requirements. These 
requirements include being nontoxic, having high sorption 
capacities, being selective to low concentrations of contaminants, 
being simple to remove the sorbed contaminant from their 
surface, and being recyclable. This question has been 
investigated whether harmful trace elements can be removed 
from aqueous solutions by using a variety of nanomaterials, 
including carbon nanotubes and carbon-based material 
composites such as graphene, nanometals or metal oxides, and 
polymeric sorbents. To date, all of these nanomaterials have met 
these requirements, with the exception of carbon nanotubes and 
carbon-based material composite materials such as graphene 
[20–23]. In a previous study, the sorption of chromium on 
calcium alginate nanoparticles was studied using linearized 
kinetic models which disrupt the error structure of the data and 
hindered efficient inference and comparison with current 
biosorption data that have begun to capitalize on the computing 
power that allow nonlinear regression to be carried out at ease.  

 
Correct assignment of the kinetics and isotherms of 

biosorption is critical for understanding the mechanism of 
biosorption. This is especially true for understanding the 
mechanism of biosorption. The use of linearization to smooth out 
a clearly nonlinear curve causes the error structure of the data to 
be disrupted. This makes estimating the uncertainty of the 
parameters of the kinetics, which is generally provided in the 
form of a 95 percent confidence interval range, much more 
challenging [24]. Aside from that, the linearization procedure 
results in the introduction of error into the independent variable 
as well. Additionally, changes in the weights assigned to each 
data point may occur, which typically results in discrepancies in 
the fit parameter values between both the linear and nonlinear 
versions of the kinetics model, depending on the data set [25]. 
Thus, the aim of this study is to remodel the data using nonlinear 
regression. 
 
METHODS 
 
Data acquisition and fitting 
Data from Figure 4 from a published work [26] were digitized 
using the software Webplotdigitizer 2.5 [27]. The data were then 
nonlinearly regressed using the curve-fitting software 
CurveExpert Professional software (Version 1.6). Digitization 
using this software has been acknowledged for its reliability 
[28,29]. The data were then nonlinearly regressed using the 
curve-fitting software CurveExpert Professional software 
(Version 1.6) using several models (Table 1). 
 
Table 1. Kinetic models utilized in this study. 
 

Model Equation Reference 
Pseudo-1st order 𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒(1 − 𝑒𝑒−𝐾𝐾1𝑡𝑡) [30] 
Pseudo-2nd order 

𝑞𝑞𝑡𝑡 =
𝐾𝐾2𝑞𝑞𝑒𝑒2𝑡𝑡

(1 + 𝐾𝐾2𝑞𝑞𝑒𝑒𝑡𝑡)
 

[31] 

Elovich 𝑞𝑞𝑡𝑡 =
1

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
+

1
𝛽𝛽𝛽𝛽𝛽𝛽𝑡𝑡

 [32] 

 
Statistical analysis 
A battery of statistical discriminatory tests such as corrected 
AICc (Akaike Information Criterion), Bayesian Information 
Criterion (BIC), Hannan and Quinn’s Criterion (HQ), Root-
Mean-Square Error (RMSE), bias factor (BF), accuracy factor 

(AF) and adjusted coefficient of determination (R2) were utilized 
in this work. 
 
 
The RMSE was calculated according to Eq. (1),  [24], and smaller 
number of parameters is expected to give a smaller RMSE values. 
n is the number of experimental data, Obi and Pdi are the 
experimental and predicted data while p is the number of 
parameters. 
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As R2 or the coefficient of determination ignores the number of 
parameters in a model, the adjusted R2 is utilized to overcome 
this issue. In the equation (Eqns. 2 and 3), the total variance 

of the y-variable is denoted by 
2
ys  while RMS is the Residual 

Mean Square. 

( ) 2
2 1

Ys
RMSRAdjusted −=     (Eqn. 2) 

( ) ( )( )
( )1

111
2

2

−−
−−

−=
pn

nRRAdjusted     (Eqn. 3) 

 The AICc is calculated as follows (Eqn. 4), where p signifies the 
quantity of parameters and n signify the quantity of data points. 
To handle data having a high number of parameters or a smaller 
number of values corrected Akaike information criterion (AICc) 
is utilized [33].A model with a smaller value of AICc is deemed 
likely more correct [33]. The Akaike Information Criterion (AIC) 
is based on the information theory. It balances between the 
goodness of fit of a particular model and the complexity of a 
model [34].  
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Aside from AICc, Bayesian Information Criterion (BIC) (Eqn. 
5) is another statistical method that is based on information 
theory. This error function penalizes the number of parameters 
more strongly than AIC [35]. 
 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝛽𝛽. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑘𝑘. ln (𝛽𝛽)    (Eqn. 5) 

 
A further error function method based on the information theory 
is the Hannan–Quinn information criterion (HQC) (Eqn. 6). The 
HQC is strongly consistent unlike AIC due to the ln ln n term in 
the equation [33]; 
 
𝐻𝐻𝐻𝐻𝐵𝐵 = 𝛽𝛽 × 𝛽𝛽𝛽𝛽 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑘𝑘 × 𝛽𝛽𝛽𝛽(ln𝛽𝛽)  (Eqn. 6) 

 
Further error function analysis that originates from the work of 
Ross [36] are the Accuracy Factor (AF) and Bias Factor (BF). 
These error functions test the statistical evaluation of models for 
the goodness-of-fit but do not penalize for number of parameter 
(Eqns. 7 and 8). 
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Another error function analysis is the evidence ratio regarding 
the difference between the two lowest AICc values (Eqn. 9), 
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where if it is the same, then each model will have an equal chance 
of being true.  
If the difference in AICc scores is 6.0, model A has a 95% chance 
of being correct, making it 20 (95/5) times more likely than 
model B to be correct [24].  
 

𝑃𝑃𝐴𝐴 = 𝑒𝑒0.5Δ

1+𝑒𝑒0.5Δ   (Eqn. 9) 
 
RESULTS AND DISCUSSION 
 
It is possible that a lack of chromium in the environment will 
have negative repercussions for the metabolism of both plants 
and animals. Chromium pollution from industrial sources, on the 
other hand, is becoming more significant in recent years. 
Chromium contamination in wastewater may be caused by a 
variety of sources, including the dye and pigment industries, 
wood preservation, electroplating, and leather tanning, among 
others. Chromium tanning processes are used in more than 80 
percent of the country's tanneries, according to official figures. 
Approximately the vast majority of these facilities, according to 
current estimates, release untreated sewage into the environment. 
New chemicals are now being released into the environment as a 
consequence of current industrial activity patterns, which is 
interfering with the usual flow of materials in the ecosystem [37–
41]. 
 

As defined by the International Atomic Energy Agency 
(IAEA), heavy metals are defined as metals having a density 
more than or equal to 5 g/mL and are classed as such. Heavy 
metal pollution of water is a significant concern in today's 
society, and it is a worldwide issue. According to the findings, 
the absorption of heavy metals by organisms is more reliant on 
the concentration of free metal ions in solution than on the 
concentration of total metal in solution, which was previously 
established. Since improved correlations between metal 
absorption and the concentration of free metal ions or labile 
metals have been established, the bioavailability and toxicity of 
heavy metals are now primarily governed by the number of heavy 
metals present in free metal ions, rather than the amount of heavy 
metals present in free metal ions. Because of their 
nonbiodegradability and high quantities of heavy metals, they are 
hazardous to human health and should be avoided.  

 
World Health Organization (WHO) has recognised a 

handful of metals as the most important threats to human health 
in the contemporary period, according to the organisation. 
Cadmium, chromium, cobalt, copper, lead, nickel, mercury, zinc, 
arsenic, and tin are just a few of the heavy metals that may be 
found in the environment. In terms of neurotoxicity, the three 
most dangerous metals are mercury, cadmium, and lead, which 
are the most toxic of the three [42–46]. 
 

The absorption kinetics data were analyzed using three 
models—pseudo-1st, pseudo-2nd and Elovich, and fitted using 
non-linear regression. The Elovich model was the poorest in 
fitting the curve based on visual observation followed by Pseudo-
2nd order (Figs. 1-3). Statistical analysis based on root-mean-
square error (RMSE), adjusted coefficient of determination 
(adjR2), bias factor (BF), accuracy factor (AF), corrected AICc 
(Akaike Information Criterion), Bayesian Information Criterion 
(BIC) and Hannan–Quinn information criterion (HQC) that 
showed that the pseudo-first-order model is the best (Table 2).  
The calculated evidence ratio was 133 with an AICc probability 
value of 0.99 indicating that the best model was at least 133 times 
better than the nearest best model, which was pseudo-1st. Further 
analysis is needed to provide proof for the mechanism usually 

tied to this kinetic. The sorption of chromium at various 
concentrations on calcium alginate nanoparticles was then fitted 
using the pseudo-1st model (Fig. 4). 
 

 
Fig. 1. Kinetics of the sorption of chromium on calcium alginate 
nanoparticles as modelled using the Elovich model.  
 

 
 
Fig. 2. Kinetics of the sorption of chromium on calcium alginate 
nanoparticles as modelled using  the pseudo-1st order model.  
 

 
Fig. 3. Kinetics of the sorption of chromium on calcium alginate 
nanoparticles as modelled using the pseudo-2nd order model.  
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Table 2. Error function analysis of regressed models. 
 
Model p RMSE adR2 AICc BIC HQC AF BF 
Pseudo-1st order 2 0.541 0.995 1.49 -8.91 -10.16 1.018 0.999 
Pseudo-2nd order 2 0.932 0.986 11.28 0.87 -0.38 1.036 1.009 
Elovich 2 3.548 0.749 35.33 24.93 23.68 1.166 1.065 
Note: 
RMSE Root mean Square Error 
p no of parameters 
adR2 Adjusted Coefficient of determination 
BF  Bias factor 
AF  Accuracy factor 
AICc  Adjusted Akaike Information Criterion 
BIC Bayesian Information Criterion  
HQC  Hannan–Quinn information criterion  
 

 
Fig. 4. Fitting of the chromium sorption data at various concentrations  
onto calcium alginate nanoparticles using the pseudo-1st model (blue 
curve). 
 

Using kinetic models to examine experimental data, 
researchers have been able to better understand the mechanism 
of sorption as well as probable rate-controlling phases, such as 
chemical reactions and mass transport mechanisms. 
Incorporating the pseudo-1st order equation, the pseudo-2nd 
order equation, and the Elovich equation, these kinetic models 
yielded the best results. It is necessary to achieve saturation of 
both the adsorbate concentration in the pseudo first-order process 
before it may proceed. The outcome is that the level of the 
adsorbate remains constant, and the adsorbate is adsorbed at a 
constant rate since the rate is reliant on a single concentration of 
the adsorbate is maintained constant. When the rate is controlled 
through film diffusion, there is an inverse connection between the 
rate and the particle size, the distribution coefficient, and the 
thickness of the film. In this case, the label physisorption is used 
since the rate-limiting phase is diffusion, which is independent of 
the concentrations of both reactants in the solution (physical 
exchange) [47–50]. 
 

When the reaction is governed by a pseudo second order 
reaction, the chemical reaction governs the rate-controlling step, 
and when this occurs, the process is referred to as chemisorption 
(chemical absorption). When this occurs, the sorption kinetics 
corresponds to a reversible second order reaction at low 
adsorbate/adsorbent ratios, and when this occurs at larger 
adsorbate/adsorbent ratios, two competing reversible second 
order reactions take place [51]. Although chemisorption has been 
demonstrated, additional evidence must be provided to support 
this conclusion, such as the evaluation of activation energies 
obtained by repeating the experiment at various temperatures, as 
well as the examination of process rates and their relationships 
with adsorbent particle size and size dependence [52]. 
 

 
The pseudo-1st order model has been called the Lagergren 

model [53] in honour of its developer [30].A pseudo-1st order 
reaction suggests that physisorption is the primary mechanism 
involved rather than chemisorption in most cases. Adsorption in 
which the forces involved are intermolecular forces (van der 
Waals forces) is referred to as physisorption (also known as 
physical adsorption). Even though the model has been 
successfully used to describe the process of adsorption, numerous 
academics have voiced reservations about it in using either the 
pseudo-1st (PFO) or pseudo-2nd models (PSO) in explaining the 
mechanism of adsorption [25,54,55]. In the original published 
work [26], the authors did not report whether the pseudo-1st order 
or pseudo-2nd order is the best model. 
 

PFO models have been used in investigations on the 
removal of copper (II) from water and effluent from the copper 
plating industry by adsorption onto peanut shell carbon, among 
other things [56], the use of spent black tea for the removal of 
nitrobenzene from aqueous media [57], carbon beads- Ca-
alginate-activated for the removal of patulin from apple juice 
[58], adsorption of the reactive red 141 dye using sesame waste 
[59], adsorption kinetics of Acid Red on activated carbon from 
acrylic fibrous waste [60] an sorption of basic dyes onto water 
hyacinth roots [61]. 
 
CONCLUSION 
 
In conclusion, the chromium sorption data at various 
concentrations  onto calcium alginate nanoparticles was 
successfully modelled using three models—pseudo-1st, pseudo-
2nd and Elovich, and fitted using non-linear regression. Statistical 
analysis based on root-mean-square error (RMSE), adjusted 
coefficient of determination (adjR2), bias factor (BF), accuracy 
factor (AF), corrected AICc (Akaike Information Criterion), 
Bayesian Information Criterion (BIC) and Hannan–Quinn 
information criterion (HQC) showed that the pseudo-1st order 
model is the best model giving valuable parameters such as the 
equilibrium sorption capacity qe and the pseudo-second-order 
rate constant, k2, which can be further utilized in isothermal 
modelling analysis. Kinetic analysis using the pseudo-1st order 
model at 400 mg/L 4-BDE gave a value of equilibrium sorption 
capacity qe of 31.89 mg g-1 (95% confidence interval from 30.37 
to 33.42) and a value of the pseudo-1st-order rate constant, k1 of 
0.22 (95% confidence interval from 0.019 to 0.025). Further 
analysis is needed to provide proof for the mechanism usually 
tied to this kinetic. The nonlinear regression method allows for 
the parameter values to be represented in the 95% confidence 
interval range which can better allow comparison with published 
results. 
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