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INTRODUCTION 
 
A respiratory disease outbreak that began in Wuhan, China, then 
spread to numerous other countries affected several countries 
throughout the world. The virus that caused the outbreak, 2019-
nCoV, was discovered [3]. As the global death toll from COVID-
19 rises, there is a growing awareness of the inequitable 
distribution of SARS-COV-2 mortality among vulnerable 
populations. Elderly persons, people living in densely populated 
regions, people with low socioeconomic status, refugees, and 
minorities are all vulnerable groups to consider. Almost every 
group is in jeopardy. Because these groups have higher infection 

rates than the overall population, they are more vulnerable to 
infection and serious sickness outcomes [4]. For a time, 
modelling research was concentrated on the dynamics of the 
epidemic in Wuhan City and Hubei Province [5]. At this early 
stage, the review of surveillance data from China to provide 
parameter estimates such as the basic reproduction number (R0), 
case fatality rate, and incubation duration has taken a significant 
amount of time and effort [6]. Parameter estimates for the early 
attempts at Susceptible-Exposed-Infectious-Recovered (SEIR) 
style dynamic models were 'stolen' from what was known about 
other coronaviruses (SARS-CoV and MERS-CoV) and/or gained 
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 ABSTRACT 
Mathematical models can be used to conduct COVID-19 pandemic analyses, including 
theoretical, quantitative, and simulation analyses. COVID-19 pandemic models such as the 
modified Gompertz, von Bertalanffy, modified logistics including the recent MMF model which 
was the best model in fitting the total number of COVID-19 cases for Brazil. We were the first 
to note the high suitability of the MMF model to fit total death and infection cases for COVID-
19. The least-squares approach, which is employed in conventional nonlinear regression, 
including the MMF model, must be subjected to the idea that data points do not rely on one 
another and that the value of a data point is not impacted by the value of data points that came 
before or after it. This is known as autocorrelation and the Durbin-Watson test can be utilized to 
check the conformity of this model to non-autocorrelation. The value of the Durbin-Watson 
statistics was d =0.648. The statistic is approximately equal to 2(1− p). We then test the 
hypothesis H0: ρ= 0 versus the alternative hypothesis of H1: ρ > 0. From the Durbin-Watson 
table [1,2] for n=50 and 4 parameters, the lower critical value for dL was 1.206, while the upper 
critical value dU was 1.537. According to this, the d value was lower than the lower critical value 
or dL, resulting in the null hypothesis being rejected or indicating that there is evidence of 
autocorrelation. This demonstrates that the MMF model used in the nonlinear regression model 
for modelling the total number of COVID-19 cases for Brazil needs remedial action, perhaps 
identifying potential outliers.  
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by fitting the models to monitoring data gathered during the 
initial outbreaks  [7].  

 
COVID-19 pandemic analyses can be performed using 

statistical models, including theoretical, quantitative and 
simulation. Organisms growth including viral infection cases 
over time usually exhibit a sigmoidal growth profile that exhibits 
lag time (), acceleration to a maximal value (m) and a final 
phase where the rate decreases and eventually reaches zero or an 
asymptote (A) is observed [8]. The sigmoidal curve can be fitted 
by different mathematical functions, such as Logistic [8,9], 
modified Gompertz [8,10], Richards [8,11], Schnute [8,12], 
Baranyi-Roberts [13], Von Bertalanffy [8,14–16], Buchanan 
three-phase  [17,18], Huang [19–22] and and Morgan-Mercer-
Flodin (MMF) [23–32,32–36]. For the analysis of the COVID-
19 pandemic [5], strong predictive ability was employed models, 
such as updated Gompertz and Bertalanffy and logistics. The 
total infection case of SARS-CoV-2 in Brazil as of 15th of July 
2020 to the 20th of December 2020 was modelled using several 
primary growth models with the MMF models found to be the 
best [32]. We were the first to note the high suitability of the 
MMF model to fit total death and infection cases for COVID-19 
[30,31,33,35,37–40]. 

 
The least-squares technique used in normal nonlinear 

regression including in the MMF model must be subjected to the 
notion that data points do not rely on one another and that the 
value of a data point is not affected by the value of data points 
that came before or after it. This is called autocorrelation. In the 
most extreme case of autocorrelation, temperature drift occurs 
throughout the duration of time measurements, and this drift 
influences the results of the measurements as they occur in a 
series of visible patterns. Another example is a 
spectrophotometer with a tungsten light that has been overused. 
The presence of autocorrelation cannot be avoided in certain 
circumstances, such as when the number of creatures that appear 
each year in a specific area is highly associated with and 
dependent on the number of creatures that appeared the prior year 
[41]. That of bacteria is very similar, in that any event that affects 
the current or previous quantities of cells will be seen in a more 
pronounced manner at a later period than it is at the moment of 
the event itself. The Durbin–Watson statistic is one of the most 
often used methods to determine whether or not there is 
autocorrelation. Draper and Smith's technique of calculating the 
level of significance is used to determine the level of significance 
in this method [1,42,43]. To test for the adequacy of the MMF 
model previously used in fitting the total COVID-19 cases in 
Brazil [32], as far as autocorrelation is concerned, the Durbin-
Watson test was utilized in this study. 

 
 
MATERIALS AND METHODS 
 
Acquisition of Data 
Data on the mathematical modelling of the total number of 
COVID-19 cases for Brazil using the MMF model (Equation 1) 
from our previous works [32] was utilized in this study (Fig. 6). 
 
 
𝑦𝑦 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 −

(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝛽𝛽)
1+(𝜇𝜇𝑚𝑚𝑡𝑡)𝛿𝛿 (Equation 1) 

 
Durbin-Watson test 
 
In the Durbin–Watson test, a statistical calculation is carried out 
to test for the level of significance [42]. 

 

 

   (1) 
In this test, the usual hypothesis where H0: ρ= 0 versus the 

alternative H1: ρ > 0 is performed. The statistic is approximately 
equal to 2(1− p). When the value is zero, the Durbin-Watson test 
statistic is 2, and when the value is one, the Durbin-Watson test 
statistic is 0. Non-autocorrelation was indicated by a d value near 
2, while positive autocorrelation was indicated by a d value 
around 0. Negative autocorrelation is shown by d values 
approaching 4 (Eqn. 1).  

 
When the Durbin-Watson test statistics are low, the null 

hypothesis should be rejected because it indicates the presence of 
autocorrelation. Unlike Because there is no distribution of the -
value in the Durbin-Watson test statistics associated with d, such 
as the t- or z-statistics, tables must be used in hypothesis testing. 

 
The decision rule for the Durbin-Watson bounds test is 
• if d > upper bound, fail to reject the null hypothesis of no 

serial correlation, 
• if d < lower bound, reject the null hypothesis and conclude 

that positive autocorrelation is 
present, 
• if lower bound < d < upper bound, the test is inconclusive. 

 
RESULTS AND DISCUSSION 
The value of the Durbin-Watson statistics was d =0.648. The 
statistic is approximately equal to 2(1− p). We then test the 
hypothesis H0: ρ= 0 versus the alternative hypothesis of H1: ρ > 
0. From the Durbin-Watson table [1,2] for n=50 and 4 
parameters, the lower critical value for dL was 1.206, while the 
upper critical value dU was 1.537. According to this, the d value 
was lower than the lower critical value or dL, resulting in the null 
hypothesis being rejected or indicating that there is evidence of 
autocorrelation. This demonstrates that the MMF model used in 
the nonlinear regression model for modelling the total number of 
COVID-19 cases for Brazil needs remedial action, perhaps 
identifying potential outliers.  

 
Autocorrelation is a measure of the degree of correlation 

(similarity) between two or more adjacent observations, and it is 
defined as Space autocorrelation is a measure of a variable's 
association with itself over time and space, and it can be either 
negative or positive depending on the variables involved. 
Negative spatial autocorrelation is noticed when unique values 
are found adjacent to one another; on the other hand, positive 
spatial autocorrelation is exhibited when undifferentiated values 
are found close to one another. However, even though it is a 
fundamental theory in spatial statistics, its characteristics and 
calculations are commonly misunderstood and misrepresented. It 
has both advantages and disadvantages. It has advantages in that 
it allows for spatial interpolation, but it has disadvantages in that 
statistical testing becomes more complex. Temporal 
autocorrelation is an extension of this notion; however, it is a 
little more complicated to understand and apply.  

 
The time that simply goes in one direction is taken into 

consideration in temporal autocorrelation, but things with 
complicated shapes and more than two dimensions are taken into 
consideration in spatial autocorrelation, where determining what 
is close by might be challenging. A variable's organised spatial 
variation in a dataset is measured using this method. In places 
that are close to one another and have values of variables that are 
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indistinguishable from one another, positive spatial 
autocorrelation is seen. Whenever there is a negative spatial 
autocorrelation, the values that are adjacent to each other are not 
the same as each other [44–50].  

 
Auto-related data causes the degree of freedom from 

statistics on inferential tests and leads to faux correlations 
between variables [51]. In a fundamental modelling exercise such 
as modified Gompertz and other models, the usage of the Durbin 
Watson test to test for autocorrelation data in time series are 
widespread [52–56]. The Breusch-Godfrey Lagrange multiplier 
test is another method of detection of autocorrelation. When 
autocorrelation is identified, the researcher can fix the condition 
using numerous methods of transformation, such as Cochrane-
Orcutt [57], Hildreth-Lu, or Prais-Winsten that can alleviate the 
presence of autocorrelation [58]. 

 
The Durbin-Watson test statist evaluates the null hypothesis 

that residuals in regular less-field regression are not auto-related 
to the alternative that residuals in an AR1 process in which the 
current value is based on the immediately previous value, which 
is an autoregressive process. The statistical range of Durbin-
Watson is between 0 and 4. Non-self-correlation is a value almost 
2; positive autocorrelation is an indication for value towards 0; 
negative automobile correlation is an indication for value 
towards 4. In all feasible circumstances, the exact critical values 
of Durbin-Watson statistics are not tabled because of the reliance 
of any computed Durbin Watson value on the corresponding data 
matrix [52,53].  

 
The crucial values were instead set by Durbin and Watson 

at the top and lower limits. The hypothesis of zero autocorrelation 
against the alternative positive self-relation of the first-order is 
typically utilised in tabular boundaries since positive 
autocorrelation is considerably more common in practice than 
negative autocorrelation. To use the table, the sample size must 
be cross-referenced to the number of regressors, eliminating the 
constant from the regressors count. When you do not have a 
permanent regression term, traditional Durbin Watson tables are 
not applicable. Instead, a proper set of Durbin-Watson tables 
must be referenced. Also, when the lagged variable is shown on 
a regressor, the traditional Durbin-Watson tables do not apply. 
For this example, Durbin suggested different testing 
methodologies. 

 
Several factors might have contributed to the introduction 

of autocorrelation into the data [59], including the following: 
1. Carryover of effect is a significant cause of autocorrelation, at 
least in part, due to the frequency with which it occurs. For 
example, statistics on monthly household expenditures are 
influenced by the same category of expenditure from the 
preceding month's data. A measure of autocorrelation may be 
found in both cross-sectional and time-series data sets. When 
looking at cross-sectional data, the feature under consideration is 
common in that it allows for the discovery of equal units. When 
working with time-series data, the element that causes self-
correlation is the element of time. It is possible to have 
autocorrelation in data when certain sample units are ordered in 
the data. Another factor that contributes to autocorrelation is the 
effect of removing specific variables from an equation. It is not 
possible to include all of the variables in a regression model when 
using regression modelling techniques such as regression 
modelling. There are a variety of reasons for this, not the least of 
which is that certain variables are qualitative, that direct 
observations on the variable are not always accessible, and so on. 
The autocorrelation in the resulting data is caused by the 
cumulative impact of the variables that were eliminated [60–65]. 

 
The introduction of autocorrelation into the data might be 

caused by incorrectly defining the kind of connection.  It is aimed 
to develop a linear relationship between the research and the 
explanatory factors in the link between the research and the 
explanatory variables. Because of a log or exponential factor in 
the model, the data exhibits autocorrelation. This is due to the 
model's linearity being questioned. It is referred to as a 
measurement error or error–in–variable for a variable when the 
difference between observed and actual values is more than one 
standard deviation.  

 
Furthermore, the presence of measurement errors in the 

dependent variable may result in autocorrelation in the data set, 
which is undesirable. It is also known as serial correlation or 
autocorrelation. It is defined as the correlation of one signal with 
a delayed replica of itself as a function of time delay. Informally, 
it is the degree to which two observations are comparable as a 
function of the time-lapse between the observations. When it 
comes to locating recurring patterns, the study of autocorrelation 
is a mathematical method that can be used to determine the 
presence of a periodic signal that has been disguised by noise or 
to identify the missing fundamental frequency in a signal hinted 
by its harmonic frequencies. It is frequently used in signal 
processing to analyse functions or series of values, such as time-
domain signals, and is particularly useful in signal processing. 
 
CONCLUSION 
 
The results of the autocorrelation exercise reveal that there is a 
presence of autocorrelation in the MMF model utilized in fitting 
the total number of COVID-19 infectious cases in Brazil. Based 
on the d value, which was lower than the lower critical value or 
dL, resulting in the null hypothesis being rejected or indicating 
that there is evidence of autocorrelation. This demonstrates that 
the MMF model used in the nonlinear regression model for 
modelling the total number of COVID-19 cases for Brazil needs 
remedial action, perhaps identifying potential outliers. 
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