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INTRODUCTION 
 

Azo dyes are the most broadly used and adaptable synthetic 
dyes; they account for more than half of all synthetic dyes 
produced yearly [1–3]. Based on the number of the azo groups, 
the azo dyes are classified as monoazo dyes, diazo dyes, triazo 
dyes and poly azo dyes [4,5]. Example of theses dyes includes 
reactive yellow 201, disperse blue 399, acid black 1, reactive 
brown 1, direct black 19, direct red 80, etc. based on applications, 
azo dyes are classified as direct, reactive, disperse, metalized, 
cationic and anionic azo dyes [6,7]. Most azo dyes are light and 
temperature stable and as well very resistant to degradation. 
Reactive dyes are the only azo dyes designed to bond covalently 
with cellulosic fibers and are therefore widely utilized in the 
textile industry [8,9]. Because of their high sulphonation, reactive 
dyes are highly water-soluble and non-degradable in normal 
aerobic conditions [10,11]. The presence of the sulfo and the azo 
groups is the main reason for the persistence and recalcitrant of 
the azo dyes [12]. Azo dyes pollution in the environment can 

persist for a very long time without appropriate treatment [13,14]. 
These compounds are carcinogenic, mutagenic and tend to 
bioaccumulate in the environment [15]. The release of dyes into 
the marine environment reduces the dissolved oxygen level, 
resulting in death from aquatic species [2].  

 
Bioremediation has been viewed as a successful, less 

energy-intensive, ecologically friendly method that results in 
partial or total bioconversion of contaminants to stable harmless 
end products [12]. The process of microbial remediation involves 
the increasing of microorganism's natural degradation capacity. 
The use of microorganisms for biodegradation is gaining 
popularity because it is cost-effective, environmentally friendly 
and result in nontoxic byproducts. Several microorganisms from 
different taxonomic groups, such as fungi, bacteria, 
actinomycetes and algae, have been found to decolorize azo dyes 
[16–20]. Environmental variables are known to have a significant 
impact on microorganism decolorization activity. The stability of 
the enzyme system involved in dye degradation may be affected 
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 ABSTRACT 
 
Azo dyes are the most well-known synthetic dyes. They have been widely utilized as colorants 
in various sectors, including textiles, photography/printing, food, medicines, etc. This industry 
has produced a massive quantity of solid waste, soil slurry, and effluents which are mostly passed 
into the water bodies or the environments. These dyes tend to compromises the physical, chemical 
and biological nature of the environments. More so, they have significant health risks on the 
aquatic life, livestock and the whole environmental biodiversity. Furthermore, they are known to 
be carcinogenic. In this research, seven (7) different kinetics models, Huang, modified Richards, 
modified Logistics, modified Gompertz, Buchanan-3-phase, Baranyi-Roberts and von 
Bertalanffy, were utilized in modeling the growth of Streptomyces DJP15 growth in the 
degradation of azo blue dye. While all the models show good curve fitting, the von Bertalanffy 
model was found to be the best model with the lowest RMSE (0.410), AICc (0.58) and has the 
highest adjR2 (0.983). Thus, this study indicated that the growth of Streptomyces DJP15 on azo 
blue dye could be described mathematically. Notably, the parameters obtained can be utilized to 
predict the bioremediation of azo blue dye in the future.  
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by physicochemical factors, resulting in reduced decolorization 
activity at extreme pH and temperature, which may compromise 
the strain's survival [1,21]. The decolorization efficiency of the 
bacteria is influenced by variables such as carbon source, 
nitrogen source, aeration, temperature, dye concentration, pH, 
inoculum size [13].  

 
Pillai [19] investigate the optimization of the biodegradation 

process conditions of azo blue dye by Streptomyces DJP15 at 
different concentrations of the dye (50, 100, 150, 200, 250 and 
300 mg/L). The decolorization percentage was quantified after 
taking the absorbance using a spectrophotometer. It was noted 
that the degradation of the dye was found to be concentration-
dependent. The percentage of dye decolorization increased with 
time, regardless of the initial dye concentration [19]. 
Furthermore, the dye degradation rate dropped with an increase 
in dye concentration, meaning the lower the dye concentration, 
the better the degradation efficiency. The effect of initial dye 
concentration on biodegradation has been previously modelled 
using different kinetics inhibition models [22–24]. This study 
aims to model the effect of initial dye concentration on the bio 
decolorization rate of azo blue dye by Streptomyces DJP15 using 
other primary kinetics models. 
 
MATERIALS AND METHODS 
 
Data source 
Data from Pillai [19] Figure 2 was scanned and processed using 
Wetplotdigitizer 2.5 [25];  this is a program that digitizes figures 
and has been widely employed and praised for its reliability 
[22,26–28].  

 
Fitting of the data 
CurveExpert Professional software (version 1.6) was used to fit 
the nonlinear equations using the Marquardt algorithm [29,30]. 
The algorithm seeks the most efficient method for reducing the 
sum of squares between measured and predicted values. It 
calculates the initial values automatically through the steepest 
ascent method. The models for inhibition of the dye 
decolorization shows in Table 1. 
 
Statistical analysis 
As previously reported, different statistical approaches were used 
in selecting the best model; these include the corrected AICc 
(Akaike Information Criterion), Root-Square Error (RMSE), bias 
factor (BF), accuracy factor (AF) and adjusted coefficient of 
determination (R2) [22,26,31]. 
 
RESULTS AND DISCUSSION 
 
Among the seven (7) different models examined, it was 
discovered that all the models show good fitting (Fig 1 to 7). 
Thus, the models were both practical and relevant to the 
biodegradation of azo blue dye by Streptomyces DJP15. The 
lowest RMSE, AICc, and highest adjusted R2 values were used 
to determine the best performance of the model fitting. The AF 
and BF values for the model were likewise good, with the closest 
values near 1.0 [32]. Statistical analysis revealed that the von 
Bertalanffy model was the best because of its lowest value for 
RMSE and AICc [33]. The model also has the highest adjusted 
correlation coefficient (adR2) and the values for AF and BF were 
close to unity (Table 2). 

 
 
 
 
 
 

Table 1. Kinetic models were used in this study. 
 

Model p Equation 
Modified 
Logistic 

 
3 
 

 

Modified 
Gompertz 

 
3  

 
Modified 
Richards 

 
 
4  

 
 
Baranyi-
Roberts 
 

 
 
4 

 

 

 

 
Von 
Bertalanffy 
 

 
3  

 
Huang  

4  

 

 
Buchanan  
Three-phase 
linear model 

 
 
3 

 

 
 
Note: 
A= maximum no of death cases lower asymptote; 
ymax= maximum no of death cases upper asymptote; 
µm = maximum specific growth rate of death; 
v= affects near which asymptote maximum no of death cases occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = time after first death case is reported 
α,β,δ and k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction 
process. The lag time (h-1) or (d-1) can be calculated as h0=µm 
 
Table 2. Error function analysis of the effect of increasing concentrations 
of Azo Blue dye to the degradation by Streptormyces DJP15 as fitted to 
various primary models. 

 
Model P RMSE R2 adR2 AF BF AICc 
Huang 4.00 0.502 0.986 0.974 1.029 1.002 14.10 
Baranyi-Roberts 4.00 0.502 0.986 0.974 1.029 1.002 14.10 
modified 
Gompertz 

3.00 0.435 0.987 0.981 1.030 1.103 1.77 

Buchanan-3-
phase 

3.00 0.465 0.986 0.978 1.030 1.003 3.11 

modified 
Richards 

4.00 0.470 0.987 0.977 1.133 1.103 12.78 

modified 
Logistics 

3.00 0.463 0.986 0.978 1.076 1.047 3.05 

von Bertalanffy 3.00 0.410 0.989 0.983 1.122 1.093 0.58 
 
Note: 
p no of parameter 
adR2 adjusted correlation coefficient 
RMSE Root mean square error 
AF Accuracy factor 
BF Bias factor 
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Fig. 1. Growth of Streptomyces DJP15 as modelled using the Huang 
model 
 

 
Fig. 2. Growth of Streptomyces DJP15 as modelled using the Baranyi-
Roberts model. 
 

 
Fig. 3. Growth of Streptomyces DJP15 as modelled using the modified 
Gompertz model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4. Growth of Streptomyces DJP15 as modelled using the Buchanan-
3-phase model 
 
 

 
Fig. 5. Growth of Streptomyces DJP15 as modelled using the modified 
Richards model. 
 

Fig. 6. Growth of Streptomyces DJP15 as modelled using the modified 
Logistics model. 
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Fig. 7. Growth of Streptomyces DJP15 as modelled using the von 
Bertalanffy model. 
 

The von Bertalanffy model is used to estimate mean length 
from age in animals. It was first used in ecology to model fish 
growth, but it is now employed in all organisms, including 
biodegradation by bacteria. The Gompertz model is famous and 
widely used in many disciplines of biology. This has also been 
used to explain the growth of animals and plants and the number 
or volume of bacteria and cancer cells. Regarding the capacity to 
estimate microbial growth under dynamic temperature 
circumstances, Huang's model is compared to Baranyi and 
Roberts's model using general estimate behavior, bias factor, 
precision, and root-mean-squared error. In realistic data, the 
Baranyi model also exhibits good practical identifiability 
properties, which implies that the confidence intervals on 
parameter values are reasonable. Although the logistic model fits 
a sigmoid curve, the modified model, like the modified Gompertz 
model, adds a lag time to account for a latency phase [24,32,33]. 
 

The fitting exercise yielded the following parameters: 
maximum growth rate (μmax), lag time (δ), and maximal growth 
rate (Ymax). These mechanistic models are employed in 
fundamental research to understand better the biological, 
chemical, and physical processes that lead to the observed growth 
profile [34]. 
 
CONCLUSION 
 
In conclusion, few studies apply mathematical modelling to the 
degradation of synthetic environmental chemical toxicants. In 
this present study, Streptomyces DJP15 was used to model the 
degradation of azo blue dye and all seven models were found to 
acceptably fit the curves.  
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