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INTRODUCTION 
 

Our actions are putting our ecosystem in danger right now. 
Heavily polluting the environment include heavy industry, 
urbanisation, and agriculture, all of which have increased in 
tandem with the world's population growth [1–4]. 
Overexploitation of natural resources, as well as men's ignorance 
of natural laws, contribute to the escalation of the problem [5–8]. 
Over the years, the amount of pollution caused by hydrocarbons 
and metal ions has steadily increased across the globe. Toxic 
chemicals generated from metals and their compounds have been 
related to a range of acute and chronic toxicity cases in high-
exposure settings such as the workplace and the environment, 
according to research. Heavy metals may be present in the 
environment in their natural state. Heavy metal levels have 
increased significantly in recent years as a consequence of human 
activities dating back to pre-industrial times, according to the 
Environmental Protection Agency [9–13]. A large and 

indiscriminate release of toxins into the environment is 
happening in parallel with the increase in population and the 
intensity of industrial activity. The presence of high quantities of 
heavy metals over the critical load may have negative 
consequences for human health and the environment. Metals 
such as arsenic, cadmium, chromium, cobalt, copper, lead, 
mercury, molybdenum, nickel, silver, and zinc are toxic in their 
elemental forms and different combinations, and they are also 
non-biodegradable in their elemental forms and various 
combinations. Metal accumulation in the food chain may 
represent a major threat to the ecosystem as a consequence of 
their carcinogenic and mutagenic properties, which are 
associated with metals. Heavy metal contamination has risen to 
the level of a global public health emergency in recent years, 
making it imperative to remove them from the environment as 
soon as possible [14–19]. 
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 ABSTRACT 
Molybdenum is a micronutrient that is required as a co-factor for a variety of hydroxylation and 
redox transfer activities in both animal and plant physiological processes. The potential of 
overexposure to interfere with the sperm production and egg formation processes in several 
species, including fish, is the biggest danger of excessive exposure. Only recently has it been 
discovered that it can be utilised as a remediation method for molybdenum-reducing bacteria. 
The effect of temperature on molybdenum reduction is one of the variables to consider. It is 
possible to use many different models to estimate the growth rate of microbes on various media 
based on the temperature being utilised. The Arrhenius model is popular because it contains a 
limited number of parameters. In general, the temperature has an effect on the development and 
metabolic activity of microorganisms on their substrates. Because microorganisms are so tiny, 
they are very sensitive to changes in their environment's temperature. Growth on molybdenum 
by Acinetobacter calcoaceticus strain Dr Y12 is described, with a discontinuous chevron-like 
graph of apparent activation energy with a breakpoint at 32.66 oC. Regression analysis results 
suggest that in the lower temperature range of 20-30 oC, growth on molybdenum had an activation 
energy of 66.48 kJ/mol, whereas, at the higher temperature range of 37–45 oC, it had an activation 
energy of 99.5 kJ/mol. For the examined temperature range (20-30 oC) and (37-45 oC), Q10 values 
of 2.46 and 3.37 and theta values of 1.09 and 1.13 were obtained, respectively. This is study is 
very useful in predicting the breakdown of molybdenum and the movement of molybdenum 
during bioremediation. 
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Molybdenum is an important trace element that acts as a 
micronutrient and is required as a co-factor for over 50 enzymes. 
It promotes cellular activity in animal and plant physiology, for 
example, by catalysing a range of hydroxylation and redox 
transfer processes [20–25]. With molybdenum's widespread use 
in the industrial production of ceramics, glass and contact lens 
solution, metallurgical processes, lubricants, pigment, catalyst, 
electronic goods, and as colour additives in cosmetics, the 
dangers to people exposed to its toxicity have also increased [26–
32]. It has been reported that an increase in the amount of 
molybdenum in groundwater in mining sites of up to 0.5 mg/L 
has been found, which is higher than the World Health 
Organization (WHO) recommended limit of 0.07 mg/L in 
drinking water [28]. Animals that have had direct contact with 
molybdenum via drinking water or while foraging for plants are 
more likely to exhibit hypocuprosis signs or suffer from 
molybdenosis after a lengthy period [22]. 

 
Microorganisms are especially susceptible to molybdenum 

breakdown when exposed to high temperatures because of their 
small size. Physiology is influenced by temperature, which 
allows organisms to better adapt to their changing environments. 
When it comes to biodegrading chemicals, the temperature is an 
essential element to take into consideration. For many years, the 
Arrhenius model has been widely employed in the study of 
bacterial growth and rates. It is often used to calculate the 
apparent activation energy, DH*, which is believed to exist for 
either growth or decay on various metabolic substrates [33–39]. 

 
Although being frequently employed in simulating the 

temperature impact in a limited temperature range, the Arrhenius 
model is less often used to larger ranges [40]. For most 
temperature ranges, the value of delta H (H*) is approximately 
constant. However, for extreme ranges of temperature, this 
number may diverge three or fourfold depending on the range of 
temperatures being examined [41]. according to some studies, the 
model may not be accurate when used across the whole bacterial 
process temperature [42]. The Arrhenius plot may also display a 
previously discovered transition which is a rapid change in the 
activation energy [43]. Arrhenius's model has the fewest 
parameters, making it relatively universally accepted by 
researchers [40]. AIn other words, the Arrhenius models are 
utilised in understanding how temperature affects bacterial 
development because of this. The Arrhenius parameter estimate 
is calculated by drawing a linear regression on the Arrhenius plot. 
Several years ago, similar research looked at Q10 value estimates 
of Arrhenius plot analysis and the impact of temperature on 
molybdenum growth done by Pseudomonas sp. strain DRYJ7 
[44]. another competing model, the Ratkowsky, is also built on 
the assumption of linear growth, but due to biological 
foundations, this model suffers from a lack of steady 
development and exhibits non-linear behaviour  [45].  

 
This research showed that there were many possible 

activation energies for the breakdown of molybdenum by a 
bacterium, which was previously unknown. It is interesting in 
terms of concepts, and it will also be extremely helpful in 
forecasting molybdenum removal and transport during 
bioremediation. 

 
 
 
 
 
 
 
 

MATERIALS AND METHODS 
 

The activation energy of growth on molybdenum by 
Acinetobacter calcoaceticus strain Dr Y12 

 
Acinetobacter calcoaceticus strain Dr Y12 was grown and 

maintained in a low phosphate media (LPM) composed of 
magnesium sulphate pentahydrate MgSO4.7H2O (0.05%), 
disodium molybdate dihydrate Na2MoO4.2H2O (0.242 % or 10 
mM), glucose (1%), ammonium sulphate (NH4)2.SO4 (0.3%), 
sodium chloride NaCl (0.5%), yeast extract (0.5%),  and 
disodium phosphate anhydrous Na2HPO4 (0.071% or 5 mM) 
[46]. Molybdenum reduction rate data from Acinetobacter 
calcoaceticus strain Dr Y12 was then processed as previous [39] 
by transferring the growth values at each temperature to the 
natural logarithm and calculating the value of the slope, which is 
equivalent to a specific growth rate.  

 
The Arrhenius equation [47] is as follows, 
 

     [Eqn. 1] 
 
 
Where T is the absolute temperature (Kelvin = oC + 273.15), 

R is the universal gas constant (0.008314 kJ/molK-1), Ea is the 
activation energy (kJ/mol) and A physically signifies the rate 
constant at which all the participating molecules possess 
sufficient energy prior reaction (Ea = 0). A linearized form is 
given via the plot of log-normal growth rate against 1/T and the 
equation is as follows; 

 

     [Eqn. 2] 
 
Coefficient of Q10 estimation 
 
The Q10 value is estimated via the following equation; 
 

    [Eqn. 3] 
 
Following rearrangement, 
 

    [Eqn. 4] 
 
The coefficient of temperature or theta (Θ) value (simplified 

Arrhenius temperature coefficient) is another important 
biological constant obtained from the substitution of the obtained 
values into the reaction rates equation governed by the Q10 rule; 

 
kT = k20Θ (T-20)   [Eqn. 5]  
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RESULTS AND DISCUSSION 
 
The effect of temperature on the growth rate of the bacterium on 
molybdenum shows an increasing growth rate leading to a 
maximum rate at 30 oC and a decrease of growth rate at higher 
temperatures (Fig. 1). When plotting ln m versus 1/T, we got a 
Chevron-like graph, which showed a discontinuous curve across 
the entire temperature range (Fig. 2). An interesting finding was 
the presence of a breakpoint at 32.66 oC. Regression analysis 
results are shown in Table 1 and Table 2 suggest that in the lower 
temperature range of 20-30 oC, growth on molybdenum had an 
activation energy of 66.48 kJ/mol, whereas, at the higher 
temperature range of 37–45 oC, it had an activation energy of 
99.54 kJ/mol. A previous study on the growth rate of 
Pseudomonas sp. strain DrYJ7  between 10 and 20 oC on 
molybdenum showed activation energy of 14.96 Kj/mol [44], 
which is much lower.  
 

Activation energy estimated using the Arrhenius model was 
within the published literature's range of activation energy for 
various biodegradation of xenobiotics (Table 2). The 
connections seem to require more energy to break apart. 
Increasing the temperature uses less energy. Of the many reports 
on the activation energy calculated from rates of metabolic 
process at various temperatures, very few works report on the 
presence of two activation energies opting instead to report for 
only one activation energy spanning a large range of temperature. 
Of the reports, two contrasting difference is seen wherein one 
study, a higher activation energy is reported at higher 
temperatures compared to a lower range of temperature while in 
another study, an opposite phenomenon is observed (Table 3). A 
case in point is the growth of Bacillus sp. JF8 on polychlorinated 
biphenyl (PCB) where the activation energy was 12.1 Kj/mol 
from 20 to 46 oC and 31.4 Kj/mol from 50 to 70 oC [48]. In 
another contrasting study, the growth of phenol by Pseudomonas 
sp. AQ5-04 shows activation energy of 38.92 Kj/mol from 15 to 
30 oC and 11.34 Kj/mol from 35-45 oC [38]. 

 

 
 
Fig 1. The effect of temperature on the specific growth rate of 
Acinetobacter calcoaceticus strain Dr Y12 on molybdenum. Error bars 
represent mean ± standard deviation (n=3). 

 
 

Fig 2. Arrhenius plot of the molybdenum reduction rate by Acinetobacter 
calcoaceticus strain Dr Y12.  
 
Table 1. The two-part linear regression analysis for the Arrhenius plot of 
molybdenum reduction rate by Acinetobacter calcoaceticus strain Dr 
Y12. 
 

Distribution of the experimental points  Three points to the left, three points 
to the right 

 
Right part 

Temperature range oC 20,25,30 
Regression equation  y = -8.0004x + 24.798 
Coefficient of determination 0.99 
tan a ± Standard error -8.00±0.23 
Ea ± Standard error, kJ mol-1 66.48±1.91 
t-Statistic -34.73 
Degrees of freedom 2  

Left part 
Temperature range oC 37,40,45 
Regression equation  y = 11.979x - 40.466 
Coefficient of determination 0.99 
tan a ± Standard error 11.98±0.79 
Ea ± Standard error, kJ mol-1 99.54±6.58 
t-Statistic 15.13 
Degrees of freedom 2  

Breakpoints data 
Intersection coordinates, (x, y)  3.27,-1.34 
Break point temperature oC 32.66 
Q10 (20-30 oC) 2.46 
Theta  (20-30 oC) 1.09 
Q10 (37-45 oC) 3.37 
Theta (37-45 oC) 1.13 

 
Table 2. Summary of nonlinear regression of the effect of temperature 
on the rate of molybdenum reduction Acinetobacter calcoaceticus strain 
Dr Y12 
 

Segmental linear regression 
Best-fit values 
intercept1 -39.08 
slope1 11.54 
X0 = 3.270 
slope2 -8.236 
Std. Error  
intercept1 1.314 
slope1 0.4104 
slope2 0.3676 
95% CI (asymptotic) 
intercept1 -43.26 to -34.90 
slope1 10.24 to 12.85 
slope2 -9.406 to -7.066 
Goodness of Fit 
Degrees of Freedom 3 
R squared 0.9963 
Sum of Squares 0.003631 
Sy.x 0.03479 
Constraints 
X0 X0 = 3.27 
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Table 3. Arrhenius temperature characteristics for metal reduction. 
 
Microorganisms Temperature 

range (oc) 
Substrate ∆H*apparent 

activation energy 
(kJ.mol-1) 

Ref 

Ochrobactrum 
intermedium 
BCR400 

25-35 Chromate 120.69 [49] 

Arthrobacter sp. 
SUK 1201  

25-60 Chromate 36.21 [50] 

Aspergillus niger 30-60 Chromate 8.56 [51] 
Bacillus sp. 25-40 Chromate 22.0 [52] 
Thermus 
scotoductus 
SA−01 

65 Chromate 35 (membrane bound 
enzyme) 
40.3 (soluble) 

[53] 

Thermus 
scotoductus 
SA−01 

60-65 Iron 30 [53] 

Shewanella 
profunda LT13a 

4-37 Iron 50.3 [54] 

β-Proteobacteria 15-40 Vanadate 36 [55] 
Shewanella 
oneidensis·MR-1  

25-40 Selenate Control system  62.90 
TPPS-supplemented 
system 47.33  
 

[56] 

Acinetobacter 
calcoaceticus 
strain Dr.Y12 

20-45 Molybdate 66.48 (20-30 oC) 
99.54 (37-45 oC) 

This study 

Note: N(TPPS) Meso-tetrakis (4-sulfonatophenyl) porphyrin mediator 
 

The higher the activation energy, the more energy the 
bacterium needs to use to metabolize xenobiotics. Based on 
Table 3, the values obtained in this study for both temperature 
ranges are within the activation energy for numerous metal 
reductions by microbial species. However, the activation energy 
for the typical mesophilic bacteria is between 33.5 and 50.3 
kJ/mol [57], indicating that the activation energy for one of the 
temperature range studied in this study was relatively higher. The 
higher activation energy for the higher range of temperature was 
within the range reported by the chromate-reducing 
Ochrobactrum intermedium BCR400 [49] (Table 3). 
 

In the current study, we found that the activation energy is 
not constant, rather it depends on the temperature chosen [58]. 
While we can't accurately estimate all of the interacting complex 
biological processes that are taking on at the same time, the 
model functions as an observational model. Activation energy 
thus should not be thought of as the activation energy utilised in 
chemical processes, but rather the total temperature response of 
the microorganism [59].  
 

Even with these problems, the model is in use worldwide. 
The activation energy, which depends on the temperature change, 
plays an important role in the metabolic activity of 
microorganisms, and it has been shown in a variety of conditions 
not limited to metal-reducing activity and include processes such 
as the decolourization of various dyes [43,60–63], chromate 
reduction [49,64] and phenolics biodegradation [38,40,65–67] 
and molybdenum [44]. 
 

The details of the process that causes the change are still 
unknown, but two hypotheses provide two plausible 
explanations. The first is that water characteristics change as it 
transitions and a hypothesis of "bottleneck" hypothesises that a 
limited number of events occur simultaneously in rapid 
succession [68]. Based on various measured Arrhenius 
breakpoint temperatures, the first theory does not seem to be 
correct [43]. Following the "bottle-neck" idea, since each of the 
chained enzymes has its unique thermal characteristics, it is 
impossible to verify the "bottle-neck" hypothesis.  

 
 
 

When taking into consideration the ambient temperature, 
the cell membrane will also vary [69]. The “bottleneck” theory 
continues to hold strong among academics [43,70]. Alternatively, 
the Arrhenius plots may be used to estimate the Q10 values, or 
they can be calculated by measuring the rates of growth for 
different incubation temperatures with ten degrees of variation 
[71]. When the bioreduction and growth rates have been 
logarithmically plotted against 1000/temperature (Kelvin), the 
Arrhenius curve is the slope of the resulting plot (Fig. 1).  
 

For the examined temperature range (20-30 oC) and (37-45 
oC), Q10 values of 2.46 and 3.37 were obtained, respectively. 
However, since biological processes are dynamic, there may be 
more than one Q10 value for a distinct temperature range being 
investigated. In the reduction of molybdate to molybdenum blue, 
a 2.038 value was obtained [72] while in another molybdenum 
reducer; Morganella sp, a Q10 value of 2.31 was obtained. When 
attributing the growth process to a distinctive biological activity, 
this value is essential. Q10 was calculated to be 2.7 for oil 
biodegradation in a beach gravel column in previous studies [73]. 
However, different research on soil polluted with decane and 
toluene shows a Q10 value of 2.2 [74].  

 
Both bacteria's ability to break down petrochemicals and the 

effects of temperature on it were determined to have a Q10 of 2.2 
[75], while, immobilised bacterial systems at temperatures 
ranging from 25 and 45 degrees Celsius produce molybdenum 
and its Q10 value is 2.8. [76]. Increasing the value of Q10 as the 
temperature decreases is often true  [77,78]. In another research, 
Pseudomonas sp. strain AQ5-04 produced a Q10 value of 1.834 
[38] while a Q10 value of 2.17 was calculated for the growth rate 
of this organism on molybdenum.  A lower Q10 value of 2.17 is 
reported in another study on molybdenum reduction [44]. 
 

For the examined temperature range (20-30 oC) and (37-45 
oC), theta values of 1.09 and 1.13 were obtained, respectively 
(Fig. 3 and Fig. 4), which was similar to a theta value of 1.08 
calculated for the molybdenum reduction by the bacterium 
Serratia sp. strain HMY1 [72]. In the growth rate on 
molybdenum by the Antarctic bacterium Pseudomonas sp. strain 
DRYJ7, a theta value of 1.03 was obtained [44]. The theta value 
is also within the range for many biological processes that are 
from 1.1 to 1.7 although higher values of up to 16.2 have been 
reported for the degradation of other xenobiotics [79].  

 
 

 
Fig. 3. Estimation of theta value for the rate of Mo-reduction within the 
temperature range of 20 to 30 oC. 
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Fig. 4. Estimation of theta value for the rate of Mo-reduction within the 
temperature range of 37 to 45 oC. 
 
CONCLUSION 
 
This is the first study demonstrated that the activation energy 
needed for the biodegradation of molybdenum by a bacterium 
which displays a broken profile with two activation energies 
observed in the Arrhenius plot. Temperature generally affects 
microbial growth and metabolic activity on their substrates. The 
small nature of microbes makes them susceptible to change in the 
surrounding temperature. Growth on molybdenum by 
Acinetobacter calcoaceticus strain Dr Y12 is described, with a 
discontinuous chevron-like graph of apparent activation energy 
with a breakpoint at 32.66 oC. Regression analysis results suggest 
that in the lower temperature range of 20-30 oC, growth on 
molybdenum had an activation energy of 66.48 kJ/mol, whereas, 
at the higher temperature range of 37–45 oC, it had an activation 
energy of 99.5 kJ/mol. For the examined temperature range (20-
30 oC) and (37-45 oC), Q10 values of 2.46 and 3.37 and theta 
values of 1.09 and 1.13 were obtained, respectively. The 
quantum, especially in between 15 and 20 oC, is relatively a bit 
higher than the typical energies observed in mesophilic 
microorganisms. The amide bond is postulated to hold much 
higher activation energy to be broken. Additional work is under 
investigation, particularly on parameters themselves, to 
determine the effects of temperature on growth kinetics.  The 
values obtained in this work are within the normal range for many 
biological processes. The values obtained in this work are within 
the normal range for many biological processes.  
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