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INTRODUCTION 
 
The presence of heavy metals and xenobiotics chemicals such 
as hydrocarbons, dyes and polymers in the environment is 
caused by the improper disposals and managements of 
industrial, agricultural and mining wastes. The removal of these 
contaminants through bioremediation can be much cheaper than 
other methods, including physical or chemical methods in the 
long run, and is also environmentally friendly. Polyethylene 
glycols are synthetic polymers, and are used in many industries 
such as cosmetics, lubricants, pharmaceuticals, and antifreeze 
for automobile radiators and in the production of non-ionic 
surfactants. PEG is nephrotoxic. Wounded rabbit exposed 

topically to polyethylene glycol-based antimicrobial cream 
model showed evidence of nephrotoxicity with symptoms of 
failure. Several of the animals tested died within one week of 
therapy [1]. About millions of tons of PEGs are manufactured 
globally. Effluents contaminated with PEGS usually reach 
conventional sewage treatment systems making them a 
significant pollutant [2].  
 

PEGs are water-soluble polymers but the difference is in 
their molecular weights. Since their introduction more than 
thirty years ago, the fate of these polymers is of concern, and 
several biodegradability studies showed some promise in their 
removal from the environment. Biodegradation of PEG was first 
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 ABSTRACT 
The accumulation of heavy metals and xenobiotic compounds in soil and aquatic bodies is 
caused by inappropriate waste disposal, industrial and mining operations, and excessive use of 
agricultural pesticides. Bioremediation is a more cost-effective way of removing these 
pollutants than other approaches. A new molybdenum-reducing bacterium with the ability to 
grow on a variety of polyethylene glycol (PEG)s has been discovered. Based on biochemical 
test, the bacterium was partially identified as Bacillus sp. strain Neni-8. Mo-blue production 
required an optimal pH of between 6.3 and 6.5, and between 30 and 37 oC. The carbon source, 
D-glucose best supported molybdenum reduction. A narrow requirement for phosphate of 
between 2.5 and 7.5 mM for molybdenum reduction was seen. Sodium molybdate as a substrate 
for reduction showed maximal reduction between 20 and 30 mM. The molybdenum blue 
absorption spectrum indicates that its identity was possibly a reduced phosphomolybdate. 
Several heavy metals such as silver, mercury, copper and chromium inhibited molybdenum 
reduction by 67.6, 48.7, 36.8 and 17.4 %, respectively. Bacterial growth modelled using the 
modified Gompertz model with PEG 600 as the best carbon source predicted a maximum 
growth rate of 15.4 Ln CFU/ml, a maximum specific growth rate of 0.198 h-1 and a lag period 
of 10.1 h. The novel characteristics of this bacterium are very useful in future bioremediation 
works. 
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documented in 1965 [2] and further isolations of PEG-
degrading microorganisms have been reported [2].   
 

Industrial and mining activities are two of the most 
frequently activities associated with molybdenum 
contamination of the environment. In Armenia, waste effluents 
from the Alaverdi copper molybdenum mine have caused the 
contamination of land with an area estimated as 300 square 
kilometres [3]. Mining activities in southern Colorado (USA) 
led to the presence of molybdenum in surrounding areas to a 
concentration as high as 2,000 mg/L in the soils. The Water 
Quality Control Commission stated that several miles of the 
Red River are considered dead due to pollution [4]. In an 
abandoned uranium mine in North Cave Hills South Dakota, 
(USA), a soil sample taken from the site in 2004 showed 
molybdenum concentration as high as 6,550 mg/Kg [5].  

 
In Jordan, extensive oilshale exploration coupled with 

intensive agriculture have caused molybdenum pollution with 
soils exhibiting molybdenum level as high as 11.7 mg/kg [6]. 
Molybdenum is mined in Malaysia as a by-product of copper 
mining. Ruptures of pipes carrying metal wastes have been 
reported to cause serious environmental issues [7]. In Batu 
Hijau, Sumbawa, Indonesia, copper and gold mining activity 
from a copper-gold-molybdenum porphyry deposit is slowly 
polluting the surrounding coastal areas with heavy metals from 
mine tailings dumped into the sea. ow reduced fish populations 
and water pollution between 2006 and 2010; the  mine dumps 
over several million tonnes of tailings into the ocean every year 
[8,9]. Industrial activities have led to reports of molybdenum 
pollution the waters of the Tokyo Bay and the Black Sea [10] , 
and agricultural soils in Tyrol, Austria [11].  
 

Of all of the animals, ruminants are the most sensitive to 
molybdenum. Exposure to molybdenum at levels of between 5 
to 10 ppm resulted in hypocuprosis or copper deficiency. In the 
rumen of these animals, molybdenum is converted to 
thiomolybdate compounds, which are good chelators of copper. 
As a result the animals experience copper deficiency, which can 
lead to scouring and even deaths [12]. Evidences have begun to 
reveal the toxicity of molybdenum to spermatogenesis. 
Observations from several organisms such as drosophila [13], 
rats [14] and the Japanese eel (Anguilla japonica) [15] have 
shown that molybdenum affected spermatogenesis at 
concentrations of between 50 to 150 mg/Kg when fed in the 
diet. Studies in drosophila showed that molybdenum exhibits 
the most distinct genetic action at the initial phases of 
spermatogenesis [13]. 
 

Molybdenum can be removed from solution through 
chemical, physical and biological methods. Of all these 
methods, biological removal via bacterial reduction is gaining 
more attention due to economic factors. Bacterial reduction the 
insoluble molybdenum disulphide [16] by sulphate reducing 
bacteria, and to the colloidal molybdenum blue [17] are 
candidates for molybdenum bioremediation. Of the two, the 
latter is preferred as the bacterial conversion of molybdenum to 
Mo-blue can be carried out under facultative anaerobic 
conditions instead of a complete anaerobic conditions in the 
former [18]. Mo-reducing bacterial candidates suitable for 
bioremediation have been reported such as E. coli K12 [19], 
Acinetobacter [20], and bacteria from the genera of 
Enterobacter [18,21], Klebsiella  [22–24], Bacillus [25,26], 
Pseudomonas [27,28], and Serratia [29–32]. A Mo-reducing 
bacterium isolated from polluted Indonesian soil shows the 
ability to use various PEGs as carbon sources for growth. The 

novel characteristics of the bacterium are very useful in future 
bioremediation works. 

 
MATERIALS AND METHODS 
 
Growth, isolation and characterization of Mo-reducing 
bacterium 
Samples were collected about 5 cm deep from the topsoil, taken 
from an industrial site in Bukittingi, West Sumatra, Indonesia, 
in January 2009 by the late Dr Neni Gusmanizar. One gram of 
soil sample was suspended in 10 mL of sterile tap water. An 
aliquot of 0.1 mL of the soil suspension was then spread onto an 
LPM agar of or low phosphate media (pH 7.0) and incubated 
for 48 h at room temperature. The LPM was composed (w/v) as 
follows: glucose (1%), NaCl (0.5%), MgSO4.7H2O (0.05%), 
yeast extract (0.5%), Na2MoO4.2H2O (0.242 % or 10 mM), 
(NH4)2.SO4 (0.3%), agar (1.5%), and Na2HPO4 (0.071% or 5 
mM) [32]. Molybdenum reduction was indicated by the 
presence of blue colonies.  
 

The colony with the most intense blue was restreaked on 
the LPM agar to obtain pure culture. A liquid culture was also 
utilized to monitor Mo-blue production. The blue supernatant 
was scanned from 400 to 900 nm (UV-spectrophotometer, 
Shimadzu 1201) with uninoculated media as baseline blank. 
Biochemical and phenotypical identification methods according 
to the Bergey’s Manual of Determinative Bacteriology [33] and 
the ABIS online system [34] were carried out in the process to 
identify the bacterium. 
 
Bacterial resting cells preparation  
As previously done, the study for optimum conditions necessary 
for molybdenum reduction in this bacteria used resting cells in a 
microplate (microtiter) format [35]. To prepare resting cells 
without the presence of blue product, the LPM medium above 
was modified by excluding sodium molybdate and increasing 
the phosphate concentration to 100 mM. Overnight growth from 
a single colony inoculation was carried out at 120 rpm on an 
orbital shaker (Yihder, Taiwan). Cells were centrifuged at 
15,000 x g for 10 min. Pelleted cells were rinsed twice briefly 
with deionized water and resuspended in 20 mL of LPM with 
glucose omitted.  
 

During the characterization process, appropriate changes to 
the LPM were made to address differences in phosphate, 
molybdate, and pH conditions. Cells were first thoroughly 
homogenized and180 µL was transferred into the wells of a 
sterile microplate. Then 20 µL of sterile glucose or other carbon 
sources were added from a stock solution to the final 
concentration of 1.0 % (w/v). The final volume was 200 µL. 
Addition of the carbon sources started Mo-blue production. 
Incubation was carried out at room temperature. Growth was 
measured at 600 nm while Mo-blue reduction was monitored at 
750 nm (BioRad (Richmond, CA) Microtiter Plate reader 
(Model No. 680). The readings at 750 nm must first be 
subtracted from readings at 600 nm to measure Mo-blue. The 
specific extinction coefficient of 11.69 mM.-1.cm-1 at 750 nm 
was utilized to quantify Mo-blue production. This wavelength is 
the maximum filter available for the  microplate unit [35]. The 
effect of several heavy metals was studied utilizing Atomic 
Absorption Spectrometry calibration standard solutions from 
MERCK.  
 
PEGs as carbon sources for growth 
Various polyethylene glycols compounds from PEG 200 to 
PEG 20,000 (Sigma Aldrich, St. Louis, U.S.A.) were tested for 
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their ability to act as electron donors for molybdenum 
reduction. Since none of the compound can support reduction 
based on preliminary results, the compounds were tested for 
their capacity to support growth of this bacterium. Briefly, 
glucose was replaced from the microplate above and replaced 
with various PEGs dissolved in HPM (minus sodium 
molybdate) at the final concentration of 500 mg/L. A of 50 µL 
of bacterial suspension was utilized. The final mixture had a 
total volume of 250 µL. The growth media was adjusted to pH 
7.0. The microplate was sealed as before. The increase of 
bacterial growth after an incubation period of 10 days at room 
temperature was monitored at 600 nm. Monitoring of the best 
PEG as a carbon source was carried out utilizing aerobic growth 
on HPM at room temperature, and shaken at 120 rpm on an 
orbital shaker. Growth was modelled according to the modified 
Gompertz model [36]. 
 
PEG degradation assay 
At a concentration of 10 mg/L, stock solutions of different 
PEGs were produced. The total volume was 2 mL and was 
made up of suitably diluted stock solutions of different PEGs 
ranging from 1 to 7.5 mM. Before adding the test reagents, 
samples from the resting cell preparation were diluted 
appropriately. The culture was incubated for 10 d statically at 
room temperature. PEG was quantified using a reagent 
consisting of a 200 µL solution of 5% (w/v) BaCl.2H2O in 1 M 
HCl mixed with 200 µL of a solution of 1.27g iodine dissolved 
in 100 ml of 2% (w/v) potassium iodide. After mixing, the 
reaction mixture was incubated at room temperature for 10 min 
against a reagent blank made in the same way but with water 
instead of sample. A spectrophotometer was used to read the 
mixture at 535 nm. The intensity of brownish orange hue 
formed by the complex solution was used to measure the PEG 
content. This technique is sensitive, straightforward, and 
universally applicable to all PEG derivatives [37]. 
 
Statistical analysis 
 
ANOVA with Tukey’s post hoc analysis was carried out using 
Graphpad Prism version 5.0. 
 
RESULTS AND DISCUSSIONS 
The reduction of molybdate to molybdenum blue by bacteria 
was first described more than one hundred years ago in 1896 by 
Capaldi, and Proskauer [17]. Further isolation of Mo-reducing 
bacteria in the last century were reported in 1939 [38], in 1948 
[39], in 1962 [40], in 1972 [41], in 1985 [19], and in 1993 [18]. 
Ghani et al. [18] quickly recognize the potential application of 
this phenomenon for the bioremediation of molybdenum. Since 
then, numerous Mo-reducing bacteria have been isolated [42]. 
The ability of the newly isolated Mo-reducing bacterium to 
grow on other xenobiotics is indeed a highly sought-after 
property. 
 
Mo-reducing bacterium identification 
Gram staining showed that the bacterium was Gram-positive, 
rod-shaped and motile. The bacterial identification was 
suggested by the ABIS online program (Table 1) with accuracy 
at 94% and homology (91%), as either Bacillus subtilis or 
Bacillus atropheus. Hence, identification up to the species level 
was not feasible. The bacterium was identified as Bacillus sp. 
strain Neni-8 in honor of the late Dr. Neni Gusmanizar who did 
the soil sampling. The 16s rRNA gene from this bacterium is 
now being amplified and sequenced in order to do phylogenetic 
analysis and better identify the bacterium. 
 

 
 
 
 
Table 1. Biochemical tests for Bacillus sp. strain Neni-8. 
 

Gram positive staining + Acid production from:  
Motility + N-Acetyl-D-Glucosamine d 
    
Growth at 45 ºC + L-Arabinose + 
Growth at 65 ºC ‒ Cellobiose + 
Growth at pH 5.7 + Fructose + 
Growth on 7% NaCl media + D-Glucose + 
Anaerobic growth ‒ Glycerol + 
Casein hydrolysis + Glycogen + 
Esculin hydrolysis + meso-Inositol + 
Gelatin hydrolysis + Lactose d 
Starch hydrolysis + Mannitol + 
Tyrosine degradation ‒ D-Mannose + 
Beta-galactosidase (ONPG) + Maltose         + 
Catalase + Melezitose ‒ 
Oxidase d Melibiose d 
Urease ‒ Raffinose + 
Arginine dehydrolase (ADH) ‒ Rhamnose ‒ 
Lysine decarboxylase (LDC) ‒ Ribose + 
Ornithine decarboxylase (ODC) ‒ Salicin + 
Indole production  Sorbitol + 
Citrate utilization + Sucrose + 
Egg-yolk reaction ‒ Starch + 
Nitrates reduction + Trehalose + 
Voges-Proskauer test (VP) + D-Xylose + 

Note: + positive result, − negative result, d indeterminate result 
 

Several Mo-reducing bacteria belonging to this genus have 
been reported namely Bacillus pumilus strain lbna [25],  
Bacillus sp. strain khayat [43], Bacillus sp. strain A.rzi [26], 
Bacillus sp. strain Zeid 14 [44], Bacillus tequilensis strain 
Pharon2 (MK078034) from Egypt and three Bacillus spp. 
Isolated from similar sites previously which are Bacillus sp. 
strain Neni-12 and [45]; Bacillus sp. strain Neni-10 [46,47] and 
Bacillus amyloliquefaciens strain Neni-9 [48], have been 
isolated.  

 
The use of resting cells in molybdenum reduction research 

is advantageous since every Mo-reducing bacterium isolate 
discovered so far reduces molybdenum best under static or low 
oxygen tension circumstances, and it was initially used in 
Enterobacter cloacae strain 48 [18]. The use of a microtiter 
plate enables for a high-throughput characterization of the 
reduction process [35,49]. For example, in selenate reduction, 
researchers have used resting cells under static circumstances to 
describe metal reduction and xenobiotics degradation in bacteria 
[50] and SDS biodegradation [51]. 
 
Molybdenum absorbance spectrum 
The bacterium exhibited a molybdenum blue spectrum with a 
maximum peak at 865 nm and a shoulder at 700 nm. As Mo-
blue production increases, a conservation of this unique profile 
was observed (Fig. 1). The Mo-blue spectrum appeared 
identical to the spectrum of molybdenum blue from the 
phosphate determination method, which exhibits a peak 
maximum near 890 nm and a characteristics shoulder at 700 
nm.  
 

The Mo-blue produced from the phosphate determination 
method is a reduced phosphomolybdate [52,53]. We discovered 
that the Mo-blue spectra from almost all of the Mo-reducing 
bacteria isolated to date are similar to the Mo-blue from the 
phosphate determination method [24,54]. Previously, we have 
suggested that this similarity indicates that during bacterial 
reduction of molybdate to Mo-blue, a phoshomolybdate 
intermediate exists [54]. The necessity for an intermediate 
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species in molybdate reduction can also be observed in relevant 
works on biological chromate reduction.  
 
In no less than two bacteria such as Pseudomonas ambigua [55] 
and Shewanella putrefaciens (now known as S. oneidensis) 
[56], the reduction of Cr6+ to Cr3+ goes through an unstable 
intermediate species, Cr5+ [57]. This phenomenon seen is 
probably due to the close similarity in chemistry between 
molybdate and chromate ions [58]. Even though nuclear 
magnetic resonance and electron spin resonance analyses are 
needed to correctly identify the lacunary species of 
phosphomolybdate involved, spectroscopic technique would be 
generally enough to distinguish the broad category existing 
amongst various heteropolymolybdates such as silicomolybdate, 
phosphomolybdate, and sulfomolybdate [52,59]. This 
observation has been reiterated and rediscussed in several of our 
previous publications [45,46,48]. 

 

 
Fig. 1. Scanning absorption spectrum of Mo-blue from Bacillus sp. 
strain Neni-8 at different time intervals. 
 
Effect of pH and temperature on molybdate reduction 
Bacillus sp. strain Neni-8 showed an optimum pH of between 
6.3 and 6.5 (Fig. 2) in supporting optimal reduction, while the 
optimum temperature ranged from 30 °C to 37°C (Fig. 3). The 
optimum range of temperature will be an advantage for 
bioremediation works in a tropical region like Sumatera. The 
majority of the reducers require optimal temperature of between 
25 and 37 ºC with the only cold-tolerant Mo-reducing bacterium 
isolated from Antarctica [42] having optimum temperature 
below 20 °C.  
 

All of the Mo-reducing bacteria isolated to date show 
optimal pH around subneutral pHs ranging from pH 5.0 to 7.0 
[42]. This is probably because acidic pHs play an important role  
in the formation and stability of phosphomolybdate, and 
coupled with optimal bacterial metabolic activity needed in 
reducing molybdenum [54]. 

 
 

 
Fig. 2.  Molybdenum reduction at various pHs by Bacillus sp. strain 
Neni-8. The error bars are mean ± standard deviation of triplicate 
experiments.  

 
Fig. 3.  Molybdenum reduction at various temperatures by Bacillus sp. 
strain Neni-8. The error bars are mean ± standard deviation of triplicate 
experiments.  
 
Molybdate reduction utilizing various electron donor 
D-glucose was the most optimal electron donor followed in 
descending order by sucrose, fructose, maltose, lactose, l-
arabinose, cellobiose, glycerol, meso-inositol, d-mannose, 
mannitol, melibiose and sorbitol (Fig. 4). The optimal 
concentration was 1% (w/v) (data not shown). Most of the Mo-
reducing bacteria prefer sucrose or glucose while only 
Klebsiella oxytoca strain hkeem prefers fructose as the most 
optimal electron donor for reduction [42]. These carbon sources 
are easily assimilated by bacteria.  
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With normal metabolic pathways, NADH and NADPH are 
generated. Incidentally, these compounds are the substrates for 
the Mo-reducing enzyme [29], thus explaining the preference. A 
cheaper carbon source for example molasses can be utilized 
over sucrose and glucose in the future since molasses can be 
obtained in large quantity as agricultural waste materials 
especially sugar cane in Malaysia [60]. Molasses has been 
utilized in bacterial reduction of hexavalent chromate [61,62] 
and selenate [63]. The effect of molasses as a carbon source is 
currently being carried out. 
 

 
Fig. 4. Molybdenum reduction utilizing various electron donor. The 
error bars are mean ± standard deviation of triplicate experiments.  
 
Molybdenum reduction under various concentrations of 
phosphate and molybdate 
 Phosphate concentrations affect molybdenum generation, with 
greater phosphate concentrations drastically reducing output 
during bacterial molybdenum reduction. Phosphate 
concentrations larger than 2.9 mM, for example, do limit 
reduction, according to Ghani et al. [18] while concentrations 
higher than 5 mM inhibited the majority of the Mo-reducing 
bacteria isolated to date [42]. Phosphate concentrations of 2.5 to 
7.5 mM were necessary for optimum reduction, whereas 
amounts greater than 20 mM severely hindered it (Fig. 5). 
Glenn and Crane [64] and Shukor et al. [65] have shown that 
high phosphate concentrations disrupt the phosphomolybdate 
structure by keeping the pH constant at neutral. The 
phosphomolybdate complex is only stable in acidic 
environments, and at this pH, it is very unstable [66].  
 

Concentrations of sodium molybdate between 20 and 30 
mM were required for optimal reduction, while concentrations 
higher than 50 mM strongly inhibited reduction (Fig. 6). The 
bulk of previously identified Mo-reducing bacteria require 
molybdate concentrations between 5 and 80 mM to support 
reduction. Because these bacteria can reduce molybdenum at 
such high quantities, it's safe to assume that molybdenum isn't 
harmful to them. Molybdenum concentrations in water and soils 
can be as high as 900 mg/L and 6,500 mg/kg, respectively [5], 
these bacteria are good candidates for bioremediation of soils 
and water bodies contaminated with high concentrations of 
molybdenum. Another important requirement is that soil 
phosphate concentrations should not exceed 20 mM as this will 
severely inhibited molybdenum reduction. Since phosphate 
concentrations rarely exceeded this value in many types of soils, 
molybdate reduction should proceed unhampered [67].  
 

 
 
Fig. 5. Mo-blue production under various phosphate concentrations. 
The error bars are mean ± standard deviation of triplicate experiments.  
 

 
 
Fig. 6. Mo-blue production under various sodium molybdate 
concentrations. The error bars are mean ± standard deviation of 
triplicate experiments.  
 
Inhibitory effects of heavy metals on molybdate reduction 
Molybdenum reduction was inhibited by silver, mercury, copper 
and chromium at 2 ppm by 67.6, 48.7, 36.8 and 17.4 %, 
respectively (Fig. 7). These heavy metals, especially mercury 
and copper also inhibit many of the Mo-reducing bacteria 
isolate to date [42]. Both mercury and copper are also inhibitors 
of chromate reduction in several bacteria, which include 
Bacillus sp. and Enterobacter cloacae strain H01. The 
sulfhydryl group is the main inhibitory site for heavy metals 
[68–70]. Metal-sequestering or chelating chemicals such as 
calcium carbonate, manganese oxide, phosphate, and 
magnesium hydroxide are used to decrease the harmful effects 
of heavy metals on other metals. Nonetheless, due to the risk of 
inhibiting the target metal reduction process, these chemicals 
must be used with caution. Immobilization of the Mo-reducing 
bacteria in a membrane, such as dialysis tubing, is another way 
to shield molybdenum reduction from harmful heavy metals. 
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Fig. 7. Inhibitory effects of selected heavy metals on Mo-blue 
production by Bacillus sp. strain Neni-8. The error bars are mean ± 
standard deviation of triplicate experiments.  
 
PEGs as substrates for growth 
The bacterium was able to grow on various PEGs such as 200, 
300 and 600 (Fig. 8). The first PEG-degrading and 
molybdenum reducing bacterium is Pseudomonas putida strain 
Egypt-15, which is able to grow on PEG 4000 [71]. The growth 
of this bacterium was modelled according to the modified 
Gompertz model on PEG 600 as the best carbon source (Fig. 9). 
The growth parameters obtained were theoretical maximum 
growth of 15.4 ln CFU/ml, a maximum specific growth rate of 
0.198 h-1 and a lag period of 10.1 h. The lag shows that the 
bacterial cells expend energy to tolerate and activate the 
metabolic pathways required for PEG absorption. Other 
microorganisms that have been shown to degrade PEG, 
including bacteria such as Pseudomonas solanecearum, 
Alcaligenes xylosoxidans, Pseudomonas vesicularis,  and 
Enterobacter diversus [72], Stenotrophomonas maltophilia, 
Sphingomonas sp., Pseudomonas sp. and S. macrogoltabida 
[73], Pseudomonas spp., Rhodococcus spp., Williamsia spp., 
Mycobacterium spp. and Bacillus spp. [74]. Bacteria with 
multiple detoxification ability is valuable for bioremediation. 
However, bacteria showing the ability to reduce heavy metal 
and degrade xenobiotics at the same time are rarely reported. 
An example is in chromate reduction coupled with phenol 
degradation [75].  
 

 
 
Fig. 8. Growth of Bacillus sp. strain Neni-8 on various PEGs. The error 
bars are mean ± standard deviation of triplicate experiments.  

 
Fig. 9. Growth of Bacillus sp. strain Neni-8 on PEG 600 modelled using 
the modified Gompertz model. The error bars are mean ± standard 
deviation of triplicate experiments.  
 
CONCLUSION 
 
A Mo-reducing bacterium with the novel ability to use several 
polyethylene glycol compounds such as PEGs 200, 300 and 600 
was reported. The bacterium requires a narrow pH of between 
pH 6.3 and 6.5, and temperatures of between 30 and 37 oC for 
optimal Mo-blue production. The easily assimilable D-glucose 
was the best electron donor. The bacterium also required a 
narrow range of phosphate concentrations of between 2.5 and 
7.5 mM for optimal activity. The absorption spectrum of the 
resultant Mo-blue suggests its identity as a reduced 
phosphomolybdate. The heavy metals silver, mercury, copper 
and chromium inhibited molybdenum reduction to Mo-blue. 
The bacterium was tentatively identified as Bacillus sp. strain 
Neni-8. The growth parameters using PEG 600 as the carbon 
source obtained from the modified Gompertz model showed the 
presence of a lag period indicating that the bacterial cells spend 
energy to tolerate and activate metabolic pathways needed for 
PEG assimilation. Currently, work is underway to characterize 
PEG-degrading capacity of the bacterium as well as purifying 
and characterizing the molybdenum-reducing enzyme from this 
bacterium. 
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