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INTRODUCTION 
 
A respiratory disease outbreak that started in Wuhan, China and 
expanded to many other nations has affected several countries 
around the world. The virus responsible for the outbreak, 2019-
nCoV, was discovered in late 2019 [1,1–5]. As the global death 
toll from COVID-19 grows, more people are becoming aware of 
the unequal distribution of SARS-COV-2 mortality among 
vulnerable populations. Vulnerable groups to consider include the 
elderly, people living in densely populated areas, people with low 

socioeconomic status, refugees, and minorities. Almost every 
group is in danger. These groups are more prone to infection and 
adverse illness consequences because they have greater infection 
rates than the general population [6,7].  
 
      In the initial period, mathematical modelling research in 
Wuhan City and Hubei Province total infectious cases was focused 
on the dynamics of the pandemic[8]. At this early stage, it has 
taken a significant amount of time and effort to examine 
surveillance data from China in order to produce parameter 
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 ABSTRACT 
Numerous papers fail to conduct statistical diagnostics of the nonlinear model that was used, and 
the data may be nonrandom, which is a need for all parametric statistical evaluation procedures 
that rely on random data. Whenever the diagnostic tests find that the residuals reflect a pattern, 
there are a range of treatments available, such as nonparametric analysis or transferring to a 
different model, which should resolve the issue. Organisms’ growth including viral infection cases 
over time usually exhibit a sigmoidal growth profile that exhibits lag time, acceleration to a 
maximal value and a final phase where the rate decreases and eventually reaches zero or an 
asymptote (A) is observed. For the analysis of the COVID-19 pandemic, the total infection case 
of SARS-CoV-2 in Brazil as of 15th of July 2020 to the 20th of December 2020 was modelled using 
several primary growth models with the Morgan-Mercer-Flodin (MMF) model found to be the 
best. We were the first to note on the high suitability of the MMF model to fit total death and 
infection cases for COVID-19. The least-squares technique used in normal nonlinear regression 
including in the MMF model must be subjected to the notion that the residual values must be 
random. In order to satisfy this requirement, we conduct the Wald–Wolfowitz runs test statistical 
diagnosis tests.  The maximum number of runs counting was 5, and the predicted number of runs 
under the premise of randomness was 25.96. The z-value indicates how many normal errors the 
number of runs discovered exceeds the anticipated number of runs, and the p-value indicates how 
severe this z-value is. The significance is the same as with the other data on p-values. The null 
hypothesis that the residuals are really random can be rejected if the p-value is less than 0.05. 
Because the p-value was smaller than 0.05, the null hypothesis was dismissed, implying that there 
is strong evidence of non-randomness of the residues and further remedy is needed. 
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estimates such as the basic reproduction number (R0), case fatality 
rate, and incubation duration [9]. Early attempts at Susceptible-
Exposed-Infectious-Recovered (SEIR) style dynamic models 
were 'borrowed' from what was known about other coronaviruses 
(SARS-CoV and MERS-CoV) and/or gained through fitting the 
models to monitoring data gathered during the initial outbreaks  
[10]. COVID-19 pandemic assessments can be carried out with the 
help of statistical models, including theoretical, quantitative, and 
simulation models. Mathematical models are then applied for 
other affected countries to better understand the mode and spread 
of infection [1,4,11–18]. 
 
     Organisms growth including viral infection cases over time 
usually exhibit a sigmoidal growth profile that exhibits lag time 
(λ), acceleration to a maximal value (µm) and a final phase where 
the rate decreases and eventually reaches zero or an asymptote (A) 
is observed [19]. The sigmoidal curve can be fitted by different 
mathematical functions, such as Logistic [19,20], modified 
Gompertz [19,21], Richards [19,22], Schnute [19,23], Baranyi-
Roberts [24], Von Bertalanffy [19,25–27], Buchanan three-phase  
[28,29], Huang [30–33] and Morgan-Mercer-Flodin (MMF) [34–
43,43–47]. For the analysis of the COVID-19 pandemic [8], strong 
predictive ability was employed models, such as updated 
Gompertz and Bertalanffy and logistics. The total infection case 
of SARS-CoV-2 in Brazil as of 15th of July 2020 to the 20th of 
December 2020 was modelled using several primary growth 
models with the MMF models found to be the best 
[41,42,44,46,48–51]. 
 
     The least-squares technique used in normal nonlinear 
regression including in the MMF model must be subjected 
to the notion that the residuals of the curve be naturally 
distributed in a nonlinear regression, as opposed to the typical least 
square’s technique, which requires the residues to be normally 
distributed in a linear regression. More significantly, the residuals 
must be random and have identical variance (homoscedastic 
distribution). The Wald–Wolfowitz runs test is used to determine 
whether or not randomization has been achieved [52]. The subject 
of this study is to test for the randomness of the residual for of the 
MMF model previously used in fitting the total COVID-19 
cases in Brazil [43]. 
 
 
MATERIALS AND METHODS 
 
Data on the mathematical modelling of the total number of 
COVID-19 cases for Brazil using the MMF model (Equation 1) 
from our previous works [43] was utilized in this study (Fig. 6). 
 
Residuals 
Residuals are very important in assessing the health of a curve 
from a particular used model. Mathematically, residual for the ith 
observation in a given data set can be defined as follows (Eqn. 1); 
 

 ........................................................................ (1) 
 
Where yi denotes the ith response from a given data set while xi is 
the vector of explanatory variables to each set at the ith observation 
corresponding values in the data set. 
 
 
 
 
 
 
 

Runs test 
The runs test [53] was applied to the regression residuals in an 
effort to detect nonrandomness. In a given model, it is feasible to 
create an ordered variance of the curve that is either above or 
below the estimate. The run test contrasts a compound's typically 
negative and optimistic sequence of residues to determine if it is 
hazardous. A noteworthy result is often characterized by a shift or 
mixture of shifts or combinations of shifts between the negative 
and positive residual values. The greatest possible percentage is 
frequently used to denote the number of signs runs. The running 
test evaluates if a big number of sign passes are likely, or an 
insufficient number of sign passes are likely. A disproportionate 
number of run signs may suggest a negative serial relationship, but 
a disproportionate number of runs may indicate that residues are 
connected with the same sign or that systemic biases exist. 
 
The test statistic is 
H0=  ................................... the sequence was produced randomly 
Ha= .............................. the sequence was not produced randomly 

 ........................................................................ (Eqn. 2) 
 
Where Z is the test statistic,  is the expected number of runs, R 
is the observed number of runs and sR is the standard deviation of 
the runs. The computation of the values of  and sR (n1 is positive 
while n2 is negative signs) is as follows; 

 ................................................................... (Eqn. 3) 
 

 ................................................. (Eqn. 4) 
 
As an example  
Test statistic: Z = 3.0 
Significance level: α = 0.05 
Critical value (upper tail): Z1-α/2 = 1.96 
Critical region: Reject H0 if Z > 1.96 
If the test statistical value (Z) is greater than the critical value, then 
the dismissal of the null hypothesis at the significance stage of 
0.05 implies that the sequence was generated in a non-random 
manner. 
 
RESULTS AND DISCUSSION 
 
Runs test 
From Table 1, the maximum number of runs counting was 5, and 
the predicted number of runs under the premise of randomness was 
25.96. The z-value indicates how many normal errors the number 
of runs discovered exceeds the anticipated number of runs, and the 
p-value indicates how severe this z-value is. The significance is 
the same as with the other data on p-values. The null hypothesis 
that the residuals are really random can be rejected if the p-value 
is less than 0.05. Because the p-value was smaller than 0.05, the 
null hypothesis was dismissed, implying that there is strong 
evidence of non-randomness of the residues and further remedy is 
needed. 
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Table. Runs test data from the Morgan-Mercer-Flodin (MMF) Model 
Used for Modelling the Total Number of Covid-19 Cases for Brazil. 
 
 

Time 
(h) Residuals Binary 

Counting 
Runs 

0 0.0000 1 1 
1 -0.0600 0 2 
2 -0.1500 0 2 
5 -0.2000 0 2 
8 -0.4200 0 2 
11 -0.0100 0 2 
14 -0.1400 0 2 
17 0.1500 1 3 
20 0.0000 1 3 
23 0.1300 1 3 
26 0.2400 1 3 
29 0.2000 1 3 
32 0.1500 1 3 
35 0.1000 1 3 
38 0.1100 1 3 
41 0.050 1 3 
44 0.060 1 3 
47 -0.01 0 4 
50 -0.04 0 4 
53 -0.06 0 4 
56 -0.11 0 4 
59 -0.13 0 4 
62 -0.13 0 4 
65 -0.12 0 4 
68 -0.13 0 4 
71 -0.12 0 4 
74 -0.1 0 4 
77 -0.12 0 4 
80 -0.09 0 4 
83 -0.09 0 4 
86 -0.06 0 4 
89 -0.05 0 4 
92 -0.04 0 4 
95 -0.01 0 4 
98 -0.01 0 4 
101 0.01 1 5 
104 0.01 1 5 
107 0.02 1 5 
110 0.02 1 5 
113 0.03 1 5 
116 0.04 1 5 
119 0.04 1 5 
122 0.06 1 5 
125 0.06 1 5 
128 0.07 1 5 
129 0.07 1 5 
130 0.07 1 5 
131 0.07 1 5 
132 0.07 1 5 
133 0.07 1 5 

 
Table 1. Runs test statistical summary for the Morgan-Mercer-Flodin 
(MMF) Model Used for Modelling the Total Number of Covid-19 Cases 
for Brazil. 
 

Runs test 
Residual 
data set 

R= 5 
n0= 24 
n1= 26 
n= 50 
E(R)= 25.96 
Var(R)= 12.20 
StDev(R)= 3.49 
Z= -6.00 
p-value= 0.0000 

  
 
Using residual measurements, the fitting of a mathematical model 
may be properly diagnosed scientifically. Residuals are the 
discrepancies between the predicted and actual quantity values of 
a mathematical model. The fundamental notion is that a bad model 
would show a larger gap between projected and actual values. 
 

In time-series regression models, the run approach is commonly 
used to test for the presence of autocorrelation. Monte Carlo 
simulation experiments have revealed that the run-time test results 
in strikingly asymmetrical error rates in the two tails, implying that 
the use of run-time autocorrelation research may not be stable and 
that the Durbin-Watson approach will be the preferred method for 
measuring autocorrelation [54]. Previous similar studies based on 
looking at the randomness of the residuals justify the method use 
in this study. For instance the use of the Baranyi-Roberts model in 
fitting an algae growth curve which shows adequacy in the 
statistics [55], the Buchanan-three-phase model used in the fitting 
the growth of Paracoccus sp. SKG on acetonitrile [56], and 
Moraxella sp. B on monobromoacetic acid (MBA) [57]. The runs 
tests on the residuals for the Sips and Freundlich models for lead 
(II) absorption by alginate gel bead were found to be sufficient in 
biosorption [58]. There are other examples of the use of the runs 
test of residual in the literature in assessing the health of the 
nonlinear regression [59–63]. 
 
 
CONCLUSION 
 
The Wald–Wolfowitz runs test was used in this work to assess the 
randomness of the residual for data from  the Morgan-Mercer-
Flodin (MMF) Model Used for Modelling the Total Number of 
Covid-19 Cases for Brazil. In this experiment, the highest number 
of runs counting was 5, and the anticipated number of runs on the 
assumption of randomness was 25.96. It is indicated by the z-value 
how many normal mistakes have been detected when the number 
of runs discovered exceeds the anticipated number of runs, and it 
is indicated by the p-value how severe this z-value is. The 
importance of the data on p-values is the same as it is for the other 
data. If the p-value is less than 0.05, the null hypothesis, which 
states that the residuals are truly random, can be ruled out. Because 
the p-value was less than 0.05, the null hypothesis was rejected, 
meaning that there is substantial evidence of non-randomness of 
the residues and that further remediation is required to eliminate 
this data such as the discovery of possible outliers, is necessary. 
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