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INTRODUCTION 

 
In several herbicide formulations used successfully to suppress 
weeds, glyphosate is a selective, broad-spectrum active 
ingredient. In the last decade, glyphosate dominates the world's 
herbicides usage and its uses has increased nearly 15-fold and 
almost 8.6 billion kilos have been applied worldwide [1]. 
Substantial and continuous glyphosate-based herbicide 
application culminated in soils and stream runoff build-up. 
Glyphosate can contaminate the water supply through field 
runoff, flooding, leak, floating or spray drift, and this is closely 
associated with its polar and high solubility characteristics in 
water (11.6 g L−1, 25 ◦C) [2–4].  
 

Glyphosate pollution incidence has occurred in numerous 
incidents including river, surface waters, groundwater and 
marine water, and this is recorded globally [5–8]. In Malaysia, 
residues of glyphosate and its aminomethylphosphonic acid 
(AMPA) metabolite have been found in the surface waters at 1.0 
to 2.0 mg/L and soil and sediments from 5.0 to 6.0 mg/k near oil 
palm plantations at Tasik Chini, Pahang Malaysia. [9].  
Glyphosate pollution, represented by a growing array of recent 
toxicological tests [10–14], is a significant toxicity issue for both 
the atmosphere and human health. Its removal via bioremediation 
using degrading microorganisms [15–19] and biosorption [20–

25] are reported in the literature. Biosorption is characterized as 
a process independent of physicochemical metabolism that 
results in the removal of biological materials from the solution. 
The process was historically used to extract metals and associated 
materials [26–34], but the application is now being extended to 
remove other organic target substances such as dyes, steroids, 
pharmaceuticals, medicines and pesticides [35–37]. A variety of 
experiments have been performed on the adsorption of 
glyphosate using different materials such as biopolymer 
membrane, resin, magnetic nanocomposite and readily accessible 
activated carbon and biochar [38–41]. 
 

Previously, the absorption kinetics data of biosorption 
isotherm on the biosorption of glyphosate on palm oil fronds 
activated carbon were analyzed using three models—pseudo-1st, 
pseudo-2nd and Elovich, and fitted using non-linear regression. 
The best was pseudo-1st order [24].  Nevertheless, in nonlinear 
regression the residuals of the curve must be distributed 
normally, and residuals must be tested for the presence of outliers 
[at 95 or 99% of confidence). This is normally done using 
normality tests such as the Kolmogorov-Smirnov, Wilks-Shapiro 
and D'Agostino-Pearson and the Grubb's test, the latter test for 
the presence of an outlier, which is the focus of this study. 
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 ABSTRACT 

Generally, in nonlinear regression, the residuals of the curve must be distributed normally, and 
residuals must be tested for the presence of outliers. This is normally done using normality tests 
such as the Kolmogorov-Smirnov, Wilks-Shapiro and D'Agostino-Pearson and the Grubb's test, 
the latter test for the presence of an outlier, which is the focus of this study. Normality tests for 
residues used in general nonlinear regression revealed that the usage of the pseudo-1st order 
model in the fitting of glyphosate biosorption to palm oil fronds was adequate due to lack of an 
outlier. The Grubb’s test was applied to the residual results. The critical value of Z from statistical 
table for Grubbs’ test for a single outlier using mean and SD was 2.289 (n=10).  The Grubbs 
(Alpha = 0.05) g value was 1.844. As the test statistic is lesser than the critical assigned value, 
no outlier was deemed present. 
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METHODOLOGY 

 
Residual data were acquired from a previously published work 
[24].  
 

Residuals 

Residuals are very important in assessing the health of a curve 
from a particular used model. Mathematically, residual for the ith 
observation in a given data set can be defined as follows (Eqn. 
1); 
 
 

       (Eqn. 1) 

 
where yi denotes the ith response from a given data set while xi is 
the vector of explanatory variables to each set at the ith 
observation corresponding values in the data set. 
 

 

Grubbs’ Statistic 

In an average value, a single data point with deformation can lead 
to gross error in the fitting of a nonlinear curve. Therefore, 
searching for an outlier is an integral aspect of curve fitting. The 
Grubbs test is used to evaluate the outlier in the univariate 
environment and the data is normally distributed [42]. The test 
can be applied to the maximal or minimal observed data from a 
Student’s t distribution (Eqn. 2) and to test for both data 
simultaneously (Eqn. 3).  
 
 

 

 

 

 

 
 
 

 (Eqn. 2) 

 

 
(Eqn. 3) 

 
 

Normality test 

Residuals from the pseudo-1st order model were subjected to 
three normality tests- Kolmogorov-Smirnov [43,44], Wilks-
Shapiro [45] and the D'Agostino-Pearson omnibus K2 test [46]. 
Using graphical and numerical methods are two ways to search 
for normality. The simplest and easiest way to assess the 
normality of data is via graphical methods such as the normal 
quantile–quantile (Q-Q) plots, histograms or box plots [47]. The 
normality tests were carried out using the GraphPad Prism® 
software (Version 6.0, GraphPad Software, Inc., USA). 
 

RESULTS AND DISCUSSION 

 
Statistics often used in nonlinear regressions rely on the use of 
residual data, which is the difference between the expected and 
the actual values. Statistical analyses should be done to evaluate 
the adequacy of residues in randomness, do not include outliers, 
obey normality, and do not demonstrate autocorrelation. Usually, 
the greater the discrepancy between the expected and the 
observable values, the less well off the model. [48]. The Grubbs' 

test deals with one aspect at a time. Outliers are eliminated and 
test replicated before test passes without revealing any outliers. 
As a general rule, sample sizes of 6 or less results in biased data 
sets. Many variations of the same model alter the probability of 
identification. 
 
Table 1. Residual data from the pseudo-1st order model. 
 
 Residuals 

 0.00052 
 0.00120 
 -0.00037 
 -0.00337 
 -0.00216 
 -0.00104 
 -0.00112 
 -0.00154 
 -0.00098 
 0.00063 

Mean -0.000823 
Std. Deviation 0.0013809 

 
The Grubb’s test was applied to the residual results (Table 

1). Grubbs test statistic defines the highest absolute variance 
from the survey mean in the sample standard deviation units. The 
critical value of Z from statistical table for Grubbs’ test for a 
single outlier using mean and SD was 2.289 (n=10).  The Grubbs 
(Alpha = 0.05) g value was 1.844. Individual Z value indicates 
that the residual with a value of -0.00337 (row 4) was far from 
the rest but is deemed not a significant outlier (p > 0.05) (Table 

2). As the test statistic is lesser than the critical assigned value, 
no outlier was deemed present (Table 1).  
 
Table 2. Calculated Z value for residual data. 
 
Row Value Z Significant Outlier? 
1 0.00052 0.97257   
2 0.0012 1.46501   
3 -0.00037 0.328052   

4 -0.00337 1.844479 
Furthest from the rest, but not a 
significant outlier (P > 0.05). 

5 -0.00216 0.968225   
6 -0.00104 0.157146   
7 -0.00112 0.215081   
8 -0.00154 0.519235   
9 -0.00098 0.113696   
10 0.00063 1.052229   

 
The fitness of a mathematical model is generally calculated 

exactly via the use of residual measures. Residuals are the 
difference between the sum expected and observed using a 
specific mathematical model. The basic notion is that the greater 
the gap between the expected and the observable values, the 
weaker the model. Residual plot (observed-predicted) was tested 
and the study revealed that the data was randomly distributed for 
all experiments (Fig. 1). Evidently, a possible outlier is an 
unusual data point that the researcher marks as impossible in 
terms of a variety of unique criteria. More precisely, the outlier 
in the study may be an exceptional attribute that is definitely too 
unusual. By way of illustration, most are known to be outliers 
only if they are statistically too high for the distribution to the 
limit in the sample model [49].  

 
An easy way to mark prospective outliers in tests is to add 

boxplot, although a bit more complex methodology is often used, 
like the Chauvenet criteria in engineering and the 3-sigma 
criterion, along with the Z-score in chemometrics. Given the fact 
that these methods are very plain and quick, there is a far more 
effective way of utilizing the statistical test for outlier detection. 
Relevant assessments differ from the Dixon Q-test or the Grubbs 
ESD-test with one outlier. The key restriction of the Grubbs test 
is generally that the thinking quantity of the outliers, k, must be 
stated specifically. If k is not clarified appropriately, the results 
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of the experiments can be skewed. In the event that the outliers 
are multiple, or the exact quantity of outliers is not known, the 
Rosner Generalized Severe Studentized Deviate or ESD-test is 
prescribed [50]. This is since the existence of more than one 
outlier will distort the Grubbs test results and, as this occurs, the 
Ferguson sample skew test is more resilient against the disguising 
impact than the Grubb test [51]. 

 

 
 

Fig. 1. Residual plot for the pseudo-1st order model model. 
 
The number of bins and samples examined dictated the form 

of the distribution. In the Wilks-Shapiro test, the W2 statistic is 
calculated on the basis of the predicted values of the order 
statistics between both the identically distributed random 
variables as well as their independent covariance plus the regular 
normal distribution. If the importance of the test statistics-W2 is 
big, the agreement is refused. [45]. The Kolmogorov-Smirnov 
statistic is a non-parametric numerical test which calculates the 
cumulative residual frequency. It measures the relation between 
both the model and the values observed. It may also be used as a 
comparison of two series of observations. The p value is 
determined for the discrepancy of two combined distributions 
and the size of the sample. [52–54]. In general, the Central Limit 
Theorem (CLT), that states that on any continuous variables 
(even for discrete variables such as Binomial or Poison 
distributions), when n tends to infinite (in practice n>30) the 
frequency of distribution of probabilities tends to fit Gaussian 
distribution [55,56].  

 
The distribution skewness and kurtosis were measured as a 

measure for quantifying the disparity between the distributions 
of the samples to the usual distribution in the D'Agostino-Pearson 
normality test method. The p-value of the sum of these 
contradictions or discrepancies is then determined.  D'Agostino 
developed several normality tests but the most often utilized is 
the omnibus K2 test [46]. 
 

Graphical diagnostic of residuals normality 

The normal probability Q-Q plot of residuals for the pseudo-1st 
order model was almost in a straight line and appears to show no 
underlying pattern (Fig. 2). The resulting histogram overlaid with 
the resulting normal distribution curve (Fig. 3) indicates the 
residuals were truly random and the model used was 
appropriately fitted.  
 

 

 
Fig 2. Normal Q-Q plot for the observed sample against theoretical 
quantiles. 
 

 
 

Fig. 3. Histogram of residual for the pseudo-1st order model overlaid 
with a normal distribution (mean -0.000823 and standard deviation 
0.001380878). 
 
Table 3. Numerical normality test for the residual from the pseudo-1st 
order model after removal of an outlier. 
 
Normality test Analysis 
KS normality test   
KS distance 0.1453 
P value > 0.10 
Passed normality test (alpha=0.05)? Yes 
P value summary ns 
D'Agostino & Pearson omnibus normality test   

K2 0.1963 
P value 0.9065 
Passed normality test (alpha=0.05)? Yes 
P value summary ns 
Shapiro-Wilk normality test   

W 0.9680 
P value 0.8715 
Passed normality test (alpha=0.05)? Yes 
P value summary ns 
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CONCLUSION 

 
In conclusion, the normality checks for the residues used in this 
work showed that the usage of the pseudo-1st order model in the 
fitting of glyphosate biosorption to palm oil fronds was 
satisfactory due to the lack of an outlier. It is well established that 
several articles have not further expanded on the application of 
the model employed in the mathematical diagnosis of residues. 
This may result in a data violation in Gaussian or regular 
distribution. This assertion is an essential condition for many of 
the parametric predictive estimation techniques used in nonlinear 
regression. Methods such as the RMSE, the Pearson correlation 
coefficient either standard or modified, the F-test and the t-test 
are based on the residuals conforming to the normal distribution. 
These assumptions could avoid errors of the Type I and II errors. 
In addition, in the case that diagnostic tests indicate that 
contaminants have broken any of the assumptions that multiple 
nonparametric therapies should be used or that they should be 
changed to a new form, the condition may be remedied in 
operation. 
 

REFERENCES 

 
1.  Benbrook CM. Trends in glyphosate herbicide use in the United 

States and globally. Environ Sci Eur. 2016 Dec;28(1). 
2.  Hu YS, Zhao YQ, Sorohan B. Removal of glyphosate from 

aqueous environment by adsorption using water industrial 
residual. Desalination. 2011 Apr;271(1–3):150–6.  

3.  Ng C. Agriculture and Water Pollution Risks. UTAR Agriculture 
Science Journal. 2017;3:34–44.  

4.  Bonansea R, Filippi I, Wunderlin D, Marino D, Amé M. The Fate 
of Glyphosate and AMPA in a Freshwater Endorheic Basin: An 
Ecotoxicological Risk Assessment. Toxics. 2017;6(1):3.  

5.  Mercurio P, Flores F, Mueller JF, Carter S, Negri AP. Glyphosate 
persistence in seawater. Mar Pollut Bull. 2014;85(2):385–90.  

6.  Grandcoin A, Piel S, Baurès E. AminoMethylPhosphonic acid 
(AMPA) in natural waters: Its sources, behavior and 
environmental fate. Water Res. 2017;117:187–97.  

7.  Castro Berman M, Marino DJG, Quiroga MV, Zagarese H. 
Occurrence and levels of glyphosate and AMPA in shallow lakes 
from the Pampean and Patagonian regions of Argentina. 
Chemosphere. 2018;200:513–22.  

8.  Lupi L, Bedmar F, Puricelli M, Marino D, Aparicio VC, 
Wunderlin D, et al. Glyphosate runoff and its occurrence in 
rainwater and subsurface soil in the nearby area of agricultural 
fields in Argentina. Chemosphere. 2019;225:906–14.  

9.  Mardiana-Jansar K, Ismail BS. Residue determination and levels 
of glyphosate in surface waters, sediments and soils associated 
with oil palm plantation in Tasik Chini, Pahang, Malaysia. In 
Selangor, Malaysia; 2014.p. 795–802. Available from: 
http://aip.scitation.org/doi/abs/10.1063/1.4895304 

10.  Albañil Sánchez JA, da Costa Klosterhoff M, Romano LA, De 
Martinez Gaspar Martins C. Histological evaluation of vital 
organs of the livebearer Jenynsia multidentata (Jenyns, 1842) 
exposed to glyphosate: A comparative analysis of Roundup® 
formulations. Chemosphere. 2019;217:914–24.  

11.  de Brito Rodrigues L, Gonçalves Costa G, Lundgren Thá E, da 
Silva LR, de Oliveira R, Morais Leme D, et al. Impact of the 
glyphosate-based commercial herbicide, its components and its 
metabolite AMPA on non-target aquatic organisms. Mutat Res - 
Genet Toxicol Environ Mutagen. 2019;842:94–101.  

12.  Li Y, Ding W, Li X. Acute exposure of glyphosate-based 
herbicide induced damages on common carp organs via heat 
shock proteins-related immune response and oxidative stress. 
Toxin Rev. 2019;  

13.  Maskey E, Crotty H, Wooten T, Khan IA. Disruption of oocyte 
maturation by selected environmental chemicals in zebrafish. 
Toxicol In Vitro. 2019;54:123–9.  

14.  Smith CM, Vera MKM, Bhandari RK. Developmental and 
epigenetic effects of Roundup and glyphosate exposure on 
Japanese medaka (Oryzias latipes). Aquat Toxicol. 
2019;210:215–26.  

15.  Sabullah MK, Rahman MF, Ahmad SA, Sulaiman MR, Shukor 
MS, Shamaan NA, et al. Isolation and characterization of a 
molybdenum-reducing and glyphosate-degrading Klebsiella 

oxytoca strain Saw-5 in soils from Sarawak. Agrivita. 
2016;38(1):1–13.  

16.  Manogaran M, Shukor MY, Yasid NA, Johari WLW, Ahmad SA. 
Isolation and characterisation of glyphosate-degrading bacteria 
isolated from local soils in Malaysia. Rendiconti Lincei. 
2017;28(3):471–9.  

17.  Manogaran M, Yasid NA, Ahmad SA. Mathematical modelling 
of glyphosate degradation rate by Bacillus subtilis. J Biochem 
Microbiol Biotechnol. 2017 Jul 31;5(1):21–5.  

18.  Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY. 
Characterisation of the simultaneous molybdenum reduction and 
glyphosate degradation by Burkholderia vietnamiensis AQ5-12 
and Burkholderia sp. AQ5-13. 3 Biotech. 2018 Feb 7;8(2):117.  

19.  Xu B, Sun Q-J, Lan JC-W, Chen W-M, Hsueh C-C, Chen B-Y. 
Exploring the glyphosate-degrading characteristics of a newly 
isolated, highly adapted indigenous bacterial strain, Providencia 
rettgeri GDB 1. J Biosci Bioeng. 2019;128(1):80–7.  

20.  Cheah U-B, Kirkwood RC, Lum K-Y. Adsorption, desorption 
and mobility of four commonly used pesticides in Malaysian 
agricultural soils. Pestic Sci. 1997;50(1):53–63.  

21.  Salman J, Abid F, Muhammed AA. Batch study for pesticide 
glyphosate adsorption onto palm oil fronds activated carbon. 
Asian J Chem. 2012 Dec 1;24:5646–8.  

22.  Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, et al. Effective 
adsorption and enhanced removal of organophosphorus 
pesticides from aqueous solution by Zr-Based MOFs of UiO-67. 
ACS Appl Mater Interfaces. 2015;7(1):223–31.  

23.  Herath I, Kumarathilaka P, Al-Wabel MI, Abduljabbar A, Ahmad 
M, Usman ARA, et al. Mechanistic modeling of glyphosate 
interaction with rice husk derived engineered biochar. 
Microporous Mesoporous Mater. 2016 May 1;225:280–8.  

24.  Marbawi H, Khudri MAMRS, Othman AR, Halmi MIE, Gansau 
JA, Yasid NA. Kinetic analysis of the adsorption of glyphosate 
onto palm oil fronds activated carbon. Bioremediation Sci 
Technol Res. 2019;7(1):29–33.  

25.  Marbawi H, Khudri MAMRS, Othman AR, Halmi MIE, Gansau 
JA, Yasid NA, et al. Isothermal modelling of the adsorption of 
glyphosate onto palm oil fronds activated carbon. J Environ 
Microbiol Toxicol. 2019;7(1):21–6.  

26.  Torma AE. Use of biotechnology in mining and metallurgy. 
Biotechnol Adv. 1988;6(1):1–8.  

27.  Lokesha S, Somashekar RK. Biosorption potency of heavy 
metals by some fungi. Curr Sci. 1989;58(10):571–3.  

28.  Holan ZR, Volesky B, Prasetyo I. Biosorption of cadmium by 
biomass of marine algae. Biotechnol Bioeng. 1993;41(8):819–25.  

29.  Weppen P, Hornburg A. Calorimetric studies on interactions of 
divalent cations and microorganisms or microbial envelopes. 
Thermochim Acta. 1995;269–270(C):393–404.  

30.  Suyama K, Fukazawa Y, Suzumura H. Biosorption of precious 
metal ions by chicken feather. Appl Biochem Biotechnol - Part 
Enzyme Eng Biotechnol. 1996;57–58:67–74.  

31.  Yetis Ü, Özcengiz G, Dilek FB, Ergen N, Erbay A, Dölek A. 
Heavy metal biosorption by white-rot fungi. Water Sci Technol. 
1998;38(4-5–5 pt 4):323–30.  

32.  Lyalikova-Medvedeva NN, Khijniak TV. Biosorption of long-
lived radionuclides. Process Metall. 1999;9(C):327–34.  

33.  Lin Z-Y, Fu J-K, Wu J-M, Liu Y-Y, Cheng H. Preliminary Study 
on the Mechanism of Non-enzymatic Bioreduction of Precious 
Metal Ions. Acta Phys - Chim Sin. 2001;17(5):479–80.  

34.  Mallick N. Biotechnological potential of Chlorella vulgaris for 
accumulation of Cu and Ni from single and binary metal 
solutions. World J Microbiol Biotechnol. 2003;19(7):695–701.  

35.  Gadd GM. Biosorption: critical review of scientific rationale, 
environmental importance and significance for pollution 
treatment. J Chem Technol Biotechnol. 2009;84(1):13–28.  

36.  Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, 
Ahmad A. Removal of Pesticides from Water and Wastewater by 
Different Adsorbents: A Review. J Environ Sci Health Part C. 
2010;28(4):231–71.  

37.  Fomina M, Gadd GM. Biosorption: current perspectives on 
concept, definition and application. Bioresour Technol. 
2014;160:3–14.  



BESSM, 2020, Vol 4, No 2, 18-22 

 

- 22 - 
 

38.  Carneiro RTA, Taketa TB, Gomes Neto RJ, Oliveira JL, Campos 
EVR, de Moraes MA, et al. Removal of glyphosate herbicide 
from water using biopolymer membranes. J Environ Manage. 
2015;151:353–60.  

39.  Chen F, Zhou C, Li G, Peng F. Thermodynamics and kinetics of 
glyphosate adsorption on resin D301. Arab J Chem. 
2016;9:S1665–9.  

40.  Fiorilli S, Rivoira L, Calì G, Appendini M, Bruzzoniti MC, 
Coïsson M, et al. Iron oxide inside SBA-15 modified with amino 
groups as reusable adsorbent for highly efficient removal of 
glyphosate from water. Appl Surf Sci. 2017;411:457–65.  

41.  Dissanayake Herath GA, Poh LS, Ng WJ. Statistical optimization 
of glyphosate adsorption by biochar and activated carbon with 
response surface methodology. Chemosphere. 2019;227:533–40.  

42.  Grubbs F. Procedures for detecting outlying observations in 
samples. Technometrics. 1969;11(1):1–21.  

43.  Kolmogorov A. Sulla determinazione empirica di una legge di 
distribuzione. G Dell’ Ist Ital Degli Attuari. 1933;4:83–91.  

44.  Smirnov N. Table for estimating the goodness of fit of empirical 
distributions. Ann Math Stat. 1948;19:279–81.  

45.  Royston P. Wilks-Shapiro algorithm. Appl Stat. 1995;44(4):R94.  
46.  D’Agostino RB. Tests for Normal Distribution. In: D’Agostino 

RB, Stephens MA, editors. Goodness-Of-Fit Techniques. Marcel 
Dekker; 1986.  

47.  Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear 
regression: a practical and nonmathematical review. FASEB J 
Off Publ Fed Am Soc Exp Biol. 1987;1(5):365–74.  

48.  López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical 
evaluation of mathematical models for microbial growth. Int J 
Food Microbiol. 2004;96(3):289–300.  

49.  Barnett V, Lewis T. Outliers in Statistical Data. 3rd ed. 
Chichester ; New York: Wiley; 1994. 604 p.  

50.  Rosner B. Fundamentals of biostatistics. 7th ed. Boston: 
Brooks/Cole; 2011.  

51.  Bendre SM, Kale BK. Masking effect on tests for outliers in 
normal samples. Biometrika. 1987 Dec 1;74(4):891–6.  

52.  Kolmogorov A. Sulla determinazione empirica di una legge di 
distribuzione. G Dell’ Ist Ital Degli Attuari. 1933;4:83–91.  

53.  Kolmogorov A. Confidence limits for an unknown distribution 
function. Ann Math Stat. 1941;12(4):461–3.  

54.  Smirnov N. Table for estimating the goodness of fit of empirical 
distributions. Ann Math Stat. 1948;19:279–81.  

55.  Fischer H. A History of the Central Limit Theorem: From 
Classical to Modern Probability Theory. New York: Springer-
Verlag; 2011. (Sources and Studies in the History of Mathematics 
and Physical Sciences). Available from: 
https://www.springer.com/gp/book/9780387878560 

56.  Pandoo P. Which normality test is more appropriate on residuals 
with sample size 1000?. ResearchGate. 2014 [cited 2021 Jan 4]. 
Available from: https://www.researchgate.net/post/Which-
normality-test-is-more-appropriate-on-residuals-with-sample-
size-1000. Accessed date 4th January 2021. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


