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INTRODUCTION 
 
The world is currently struggling with ongoing corona virus 
disease outbreaks, namely the 2019 corona virus disease 
(COVID-19) triggered by the novel corona virus, SARS-COV2, 
a highly virulent virus that has triggered COVID-19 to become 
a deadly disease, a disease that affects the human respiratory 
system [1].  

Historically, mathematical models have been used to provide 
practical insight into the mechanisms of transmission and 
control of infectious diseases, reminiscent of the 
groundbreaking work of Sir Ronald Ross and Kermack-
McKendrick in the 1900s [2]. Mathematical models have long 
developed quantitative knowledge in epidemiology and have 
provided useful guidance for managing outbreaks and designing 
policies. A variety of modelling studies have been carried out 
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ABSTRACT 
The novel corona virus (2019-nCoV) infection has spread rapidly to other provinces and 
neighbouring countries since the emergence of the first cases at Wuhan, China. Estimation of 
the death cases by mathematical modelling can help to determine the potential and severity of 
the outbreak and to provide critical information on the type and intensity of disease response. In 
this paper, we present different growth models such as Von Bertalanffy, Baranyi-Roberts, 
Morgan-Mercer-Flodin (MMF), modified Richards, modified Gompertz, modified Logistics 
and Huang in fitting and analyzing the epidemic trend of COVID-19 in the form of total 
number of death cases of SARS-CoV-2 in Brazil as of 15th of July 2020. The MMF model was 
found to be the best model with the highest adjusted R2 value with the lowest RMSE value. The 
Accuracy and Bias Factors values were close to unity (1.0). The parameters obtained from the 
MMF model include maximum growth of death rate (log) of 0.03 (95% CI from 0.02 to 0.028), 
curve constant (δ) that affects the inflection point of 0.7057 (95% CI from 0.68 to 0.73) and 
maximal total number of death (ymax) of 17,619,760  (95% CI from 9,705,100 to 34,994,517). 
The MMF model predicted that the total number of death cases for Brazil on the coming 15th of 
August and 15th of September 2020 will be 132,787 (95% CI of 123,422 to 142,863) and 
212,166 (95% CI of 192,578 to 233,746), respectively. The predictive ability of the model 
utilized in this study is a powerful tool for epidemiologist to monitor and assess the severity of 
COVID-19 in Brazil in months to come. However, as with any other model, these values need 
to be taken with caution due to the unpredictability of the COVID-19 situation locally and 
globally. 
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particularly for COVID-19[3]. Numerous models were 
introduced to understand the mechanisms for COVID-19 
spreading, regulating and mitigating worldwide, SEIR 
model [4]. A registered value of 3.1 was suggested for the 
simple early outbreak reproductive number using the 
assumption of regular time increases distributed by Poisson 
when fitting their results [5]. Other researchers [6] integrated 
into their model the clinical progression of the disease, the 
patient epidemiological status and the intervention measures 
and found that intervention strategies such as intense contact 
tracing accompanied by quarantine and isolation would 
effectively reduce the number of infection replication and the 
transmission risk.  
 

Another group [7] performed statistical modelling of 
possible disease trajectories to estimate the scale of the outbreak 
in Wuhan, China, and their findings suggested that control 
measures need to block well over 60 per cent of the 
transmission in order to contain the outbreak effectively. Li et 
al. [8] applied an SEIR meta-population model and Bayesian 
inference to infer essential epidemiological characteristics in 
China, and their results showed that approximately 86 percent 
of all infections were unidentified before 23 January 2020. 
 

The COVID-19 pandemic began in Brazil on 26 February 
2020 and spread rapidly to the world, beginning in the states of 
Sao Paulo and Rio de Janeiro and spreading a few weeks later 
to other Brazilian states. Three months after the first COVID-19 
outbreak, many Brazilian states are still in precarious condition, 
with their health systems overwhelmed, most of them 
occupying or even collapsing more than 80 per cent. Brazil is 
now considered Latin America's epidemic centre, taking second 
place in total number of cases and more recently in total deaths 
[9]. The situation in Brazil is critical and the authorities need a 
general scenario and the development of the Covid-19 trend. 
The Use of a basic maths model previously used for 
microorganism would be described here. 
 

Usually, the growth curve of virus and microorganism on 
substrate such as nutrients or other organisms including human 
followed a sigmoidal pattern, starting with the lag section just 
after t = 0, followed by the logarithmic section and then the 
organism enters the stationary phase and finally moves to death 
phase or decline growth. In order to describe organism growth 
curve, there are various sigmoidal functions such as Von 
Bertalanffy, Baranyi-Roberts, modified Richards, modified 
Gompertz and modified Logistics  [10] including Morgan-
Mercer-Flodin (MMF) [11].  The growth curve valuable 
parameters include the maximum specific growth rate (μm), the 
lag period and the asymptotic values. Analyses of COVID-19 
pandemic including theoretical, quantitative and simulation for 
the total number of death cases and deaths can be carried out 
using mathematical models. Models such as the modified 
Gompertz, von Bertalanffy and logistics have been utilized to 
model COVID-19 pandemic [12] with good predictive ability.  
The objective of this work is to evaluate several available 
models such as Logistic [10,13], Gompertz [10,14], Richards 
[10,15], Morgan-Mercer-Flodin (MMF) [11], Baranyi-Roberts 
[16], Von Bertalanffy [17,18], Buchanan three-phase [19] and 
more recently Huang model [20] in fitting and analyzing the 
epidemic trend of COVID-19 in the form of total death case of 
SARS-CoV-2 in Brazil as of 15th of July 2020. 
 
 
 
 
 

MATERIALS AND METHODS 
 
Data for the cumulative or total number of death cases from 
Brazil as of 15th of July 2020 was acquired from Worldommeter 
[21]. Data were first converted to logarithmic values and the 
time after first death was utilized for time zero. 
 
Statistical analysis 
Statistical significant difference between the models was 
calculated through various methods including the adjusted 
coefficient of determination (R2), accuracy factor (AF), bias 
factor (BF), Root-Mean-Square Error (RMSE) and corrected 
AICc (Akaike Information Criterion) as before [22]. 
 
The RMSE was calculated according to Eq. (1), where Pdi are 
the values predicted by the model and Obi are the experimental 
data, n is the number of experimental data, and p is the number 
of parameters of the assessed model.  
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The adjusted R2 is used to calculate the quality of nonlinear 
models according to the formula where RMS is Residual Mean 
Square and Sy

2 is the total variance of the y-variable ad 
calculated as follows;  
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The Akaike information criterion (AIC) [23]  was calculated as 
follows; 
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Where n is the number of data points and p is the number of 
parameters of the model. The model with the smallest AICc 
value is highly likely correct [24]. 
 
Accuracy Factor (AF) and Bias Factor (BF) as suggested by 
Ross [25] were calculated as follows; 
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Fitting of the data 
Fitting of the bacterial growth curve using various growth 
models (Table 1) was carried out using GraphPad Prism (v 8.0 
trial version). 

 
Table 1. Models used in this study. 
 

Model p Equation 
 
Modified Logistic 
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Gompertz 
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Modified Richards 
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Morgan-Mercer-
Flodin (MMF) 
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Baranyi-Roberts 
 

 
 
4 
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Von Bertalanffy 
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Huang 
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Buchanan  
Three-phase linear 
model 

 
 
3 

 

 
 
Note: 
A= maximum no of death cases lower asymptote; 
ymax= maximum no of death cases upper asymptote; 
µm= maximum specific growth rate of death; 
v= affects near which asymptote maximum no of death cases occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = time after first death case is reported 
α,β,δ and k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the 
reduction process. The lag time (h-1) or (d-1) can be calculated as h0=µm 
When data at time zero is 0 (Day after 1st death case log 1=0 for COVID-19) the 
MMF is reduced to a 3-parameter model 
 
 
 
 
 
 
 
 

RESULTS AND DISCUSSION 
Predictive mathematical epidemic models are fundamental for 
understanding the course of the epidemic and for planning 
effective control strategies (Giordano et al., 2020). 
Figure 1 to 8 represent different models to test and predict the 
death cases due to covid 19 in Brazil. All of the curves tested 
show virtually acceptable best fits with the exception of the 
Buchanan-3-phase model (Figs 4). The best performance was 
the MMF model with the lowest value for RMSE, AICc and the 
highest value for adjusted R2. The AF and BF values were also 
excellent for the model with their values which were closest to 
1.0. The poorest performance was the Buchanan-3-phase model 
(Table 2) with lowest R2 value. The coefficients for the best 
analysed model, MMF model are shown in Table 3.  
 

Obviously, a model needs to integrate more variables, at a 
higher level of complexity, to better represent the (complex) 
truth. While such a model may theoretically be more beneficial 
in a practical sense , it is important to note that a model's 
increased complexity typically results in increased difficulty in 
evaluating, controlling and executing, thereby sacrificing some 
or all of the benefits of a simpler model counterpart. It is 
important to remember, in the meantime, that all mathematical 
models have underlying assumptions and conditions. No matter 
its form and sophistication, a model can never be greater than 
its hypotheses[3]. 

 
Prediction intervals were calculated and graphically 

displayed for each mathematical model of 95% confidence 
levels. These intervals can predict the behavior of culture in the 
future. The coefficients of these models are displayed in Tab. I. 
Their values determine the form of curves. They were found out 
after fitting experimental data to mathematical model. The 
coeffi cient A is carrying capacity, N0 is the population size at 
time t = 0, r is the intrinsic growth rate and represents growth 
rate per capita and β by Richards model is the population 
intrinsic factor. The diff erent values of parameters N0 and r are 
given by another form of equations of models. The parameter K 
is similar by all models, because it determines the maximum 
population size which should be the same. 
 
Table 2. Statistical tests for the various models utilized in modelling the total 
number of death due to Covid 19 in Brazil as of 15th of July 2020. 
 
Model p RMSE     R2 adR2 AF BF AICc 
Huang 4 0.330 0.970 0.968 1.046 0.99 -95.73 
Baranyi-Roberts 4 0.330 0.971 0.968 1.046 0.99 -95.74 
modified Gompertz 3 0.279 0.978 0.976 1.062 1.00 -115.73 
Buchanan-3-phase 3 0.433 0.948 0.945 1.062 0.99 -72.01 
modified Richards 4 0.282 0.978 0.976 1.034 1.00 -111.25 
MMF 3 0.116 0.996 0.996 1.013 1.00 -203.74 
modified Logistics 3 0.382 0.956 0.953 1.045 0.99 -84.45 
von Bertalanffy 3 0.232 0.985 0.984 1.029 1.00 -134.16 
Note: p is no of parameter 
        

 
  

 
Table 3. Coefficients as modelled using the MMF model. 
 
Parameters Value 95% Confidence interval 
µm 0.03 0.02 to 0.02837 
δ 0.7057 0.68 to 0.73 
ymax  17,619,760 9,705,100 to 34,994,517 
 
 
 
 
 
 
 
 
 
 
 

Y = A, IF X < LAG 
Y=A + K(X ̶ λ), IF λ ≤ X ≥ XMAX 
Y = YMAX, IF X ≥ XMAX 
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Table 4. Predictions of COVID-19 pandemic for Brazil based on the MMF 
model. 
 
Prediction Mean 95% Confidence interval 
Maximum number of total 
cases by the end of COVID-
19 

17,619,760 
 

9,705,100 
 

 
to 34,994,517 

 
Maximum number of total 
cases by 15th of August 
2020 

132,787 123,422 
 
to 142,863 

Maximum number of total 
cases by 15th of September 
2020 

212,166 192,578 to 233,746 

 
The parameters obtained from the MMF model include 

maximum growth of death rate (log) of 0.03 (95% CI from 0.02 
to 0.028), curve constant (δ) that affects the inflection point of 
0.7057 (95% CI from 0.68 to 0.73) and maximal total number 
of death (ymax) of 17,619,760 (95% CI from 9,705,100 to 
34,994,517). The MMF model predicted that COVID-19 deaths 
will end about 3,027 days (95% CI of 1,866 to 4,188) days from 
15th of July 2020 based on the lower bound of the 95% CI from 
the calculated maximum number of total cases (ymax) while the 
mean and upper 95% CI bound values failed to be predicted by 
the software for their number of days. The MMF predicted that 
the total number of death cases for Brazil on the coming 15th of 
August and 15th of September 2020 will be 132,787 (95% CI of 
123,422 to 142,863) and 212,166 (95% CI of 192,578 to 
233,746), respectively.  

 
This prediction has to be taken with caution since the 

model failed to predict the number of days for the mean and 
upper 95% CI values and the number of days for COVID-19 to 
end may be much larger. Despite this, without governmental 
intervention such as imposing strict lockdown, the predicted 
number of deaths and duration of the pandemic are worrying 
and deserve further studies. In addition, these data were 
modelled after intensive Movement Control Order (MCO) 
measures and little increase to number of cases may appear at 
the end of the modelling period. If the MCO is lifted as 
observed in the coming weeks after the sampled data, if cases 
start to increase then the results of this modelling exercise will 
have to be validated and another modelling exercise will be 
carried out using data at the end of the modelling exercise as the 
baseline.  
 

The MMF model was originally developed to describe a 
wide variety of nutrient-response relationships in higher 
organisms [11]. To date the model has found utility in a number 
of modelling exercise involving animals such as rabbit, sheep, 
horse, microorganisms [26–30], yield of oil palm [31], ethanol 
[32] and even in finance [33]. Whether the predicted data is 
correct or not will depend on a case by case basis and include 
effectiveness of lockdown, mutation of the virus that increases 
the infectivity rate of the virus to name a few. Certainly, the 
models will be revisited every few months to remodel the data 
so a better prediction can be obtained. 
 
 

 
Fig. 1 Total no of SARS-CoV-2 death cases in Brazil as of 15th of July 
2020 as modelled using the Huang model 
 

 
Fig. 2 Total no of SARS-CoV-2 death cases in Brazil as of 15th 
of July 2020 as modelled using the Baranyi-Roberts model 
 

 
Fig. 3 Total no of SARS-CoV-2 death cases in Brazil as of 15th of July 
2020 as modelled using the modified Gompertz model. 
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 Fig. 4 Total no of SARS-CoV-2 death cases in Brazil as of 15th of July 
2020 as modelled using the Buchanan-3-phase model. 
 
 

 
 
Fig. 5 Total no of SARS-CoV-2 death cases in Brazil as of 15th of July 
2020 as modelled using the modified Richard model. 
 
 
 

 
Fig. 6 Total no of SARS-CoV-2 death cases in Brazil as of 15th of July 
2020 as modelled using the MMF model. 
 
 
 

 
Fig. 7 Total no of SARS-CoV-2 death cases in Brazil as of 15th of July 
2020 as modelled using the modified logistics model. 
 
 
 

 
Fig. 8 Total no of SARS-CoV-2 death cases in Brazil as of 15th of July 
2020 as modelled using the von Bertalanffy model. 
 
 
 
Masoudi et al. [34] reported that when nonlinear models are 
fitted to a data set of biological growth statistics, the non-
significance of the estimated parameters may imply one of the 
following: 
 

- One or more parameters in the model may not be 
useful, or more accurately, a reparameterized model 
involving fewer parameters might be more 
appropriate 

- The biological growth data used for fitting the model 
are not adequate for estimating all the parameters; or  

- The model assumptions do not conform with the 
biological system being modelled. 
 

The argument in (ii) was the case with the Buchanan -3- 
phase model, the reason for not fitting in analyzing the death 
case of Covid 19 in Brazil. 
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CONCLUSION 
 
In conclusion, the MMF model was the best model in modelling 
the cumulative number of death cases in Brazil based on 
statistical tests such as corrected AICc (Akaike Information 
Criterion), bias factor (BF), adjusted coefficient of 
determination (R2) and root-mean-square error (RMSE). 
Parameters obtained from the fitting exercise were maximum 
growth rate (µm), the curve constants (δ) and maximal total 
number of death cases (Ymax). The parameters obtained from the 
MMF model include maximum growth of death rate (log) of 
0.03 (95% CI from 0.02 to 0.028), curve constant (δ) that 
affects the inflection point of 0.7057 (95% CI from 0.68 to 
0.73) and maximal total number of death (ymax) of 17,619,760  
(95% CI from 9,705,100 to 34,994,517). The MMF predicted 
that the total number of death cases for Brazil on the coming 
15th of August and 15th of September 2020 will be 132,787 
(95% CI of 123,422 to 142,863) and 212,166 (95% CI of 
192,578 to 233,746), respectively. The model allows for 
prediction of total number of death cases and this prediction 
will vary according to various number of factors. Despite this, 
the predictive ability of the model utilized in this study is a 
powerful tool for epidemiologist to monitor and assess the 
severity of COVID-19 in Brazil in months to come. 
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