Determining the Median Lethal Concentration (LC50) and Seedling Growth Effects of MARDI Nano-fertilizer on Rock melon (Cucumis melo)

Authors

  • N.I. Fadzil Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • M.N. Mohd Rosmi Biotechnology and Nanotechnology Research Centre, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.
  • N.S. Wahid Biotechnology and Nanotechnology Research Centre, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.
  • N.S. Mohd Nor Biotechnology and Nanotechnology Research Centre, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.
  • M.S. Abdul Karim Biotechnology and Nanotechnology Research Centre, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.
  • M.F. Mohd Anuar Biotechnology and Nanotechnology Research Centre, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.
  • N.A. Masdor Biotechnology and Nanotechnology Research Centre, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia.

DOI:

https://doi.org/10.54987/ajpb.v5i1.827

Keywords:

Nano-emulsion, Nano-fertilizer, Rock melon, LC50, Toxicity

Abstract

New fertilizer formulations and nitrogen delivery systems are needed to address deteriorating nutrient-use-efficiency and environmental hazards due to farmers' dependency on chemical fertilizers. Nanofertilizers (NF) made from tailored smart nano materials are a viable alternative to inefficient and harmful traditional fertilizers. Nanotechnology and NFs may help solve chemical fertilizers formulation difficulties. To boost rock melon yields, MARDI has created a nano-fertilizer made from nano-emulsions. The relations between seed germination inhibition (%) of rock melon seed and different concentrations of MARDI nano-fertilizer showed that when nano-fertilizer concentrations increased from 10 to 45% with inhibition 3.3% to 100%, seed germination decreased. The LC50 value was calculated at 32.2% equal to 322,000 ppm, with upper and lower limits at 25.346% and 40.953%, 96 hrs after treatments, indicating the formulation is not toxic with a high LC50 value. In order to further study the effects of the created nano-fertilizer on the growth of rock melon plants across the adult, reproductive, and developmental stages, it is suggested that future field trials work use a concentration of 0.5% of the developed MARDI nano-fertilizer.

References

Alege GO, Mercy OO, Haruna U, Oni IJ, Danlami D. Comparative Assessment of Selected Fruit Peels on Growth and Yield of Okra (Abelmoschus esculentus (L.) Moench). J Biochem Microbiol Biotechnol. 2022 Jul 31;10(1):67-71.

Grant GA, Fisher PR, Barrett JE, Wilson PC. Removal of Agrichemicals from Water Using Granular Activated Carbon Filtration. Water Air Soil Pollut. 2019;230(1).

Xu S, Zhou S, Ma S, Jiang C, Wu S, Bai Z, et al. Manipulation of nitrogen leaching from tea field soil using a Trichoderma viride biofertilizer. Environ Sci Pollut Res. 2017;24(36):27833-42.

Ikram W, Akhtar M, Morel C, Rizwan M, Ali S. Phosphate fertilizer premixing with farmyard manure enhances phosphorus availability in calcareous soil for higher wheat productivity. Environ Sci Pollut Res. 2019;26(31):32276-84.

Xie S, Feng H, Yang F, Zhao Z, Hu X, Wei C, et al. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China. Environ Sci Pollut Res. 2019;26(3):2464-76.

Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, et al. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. 2017;24(4):3315-35.

Li Y, He J, Shen X, Zhao K. Effects of Foliar Application of Nano-molybdenum Fertilizer on Copper Metabolism of Grazing Chinese Merino Sheep (Junken Type) on Natural Grasslands Under Copper and Cadmium Stress. Biol Trace Elem Res. 2022;200(6):2727-33.

Liu R, Lal R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean ( Glycine max ). Sci Rep. 2014 Jul 14;4(1):5686.

Pereira EI, da Cruz CCT, Solomon A, Le A, Cavigelli MA, Ribeiro C. Novel Slow-Release Nanocomposite Nitrogen Fertilizers: The Impact of Polymers on Nanocomposite Properties and Function. Ind Eng Chem Res. 2015 Apr 15;54(14):3717-25.

Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, et al. Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen. ACS Nano. 2017 Feb 28;11(2):1214-21.

Panda J, Nandi A, Mishra SP, Pal AK, Pattnaik AK, Jena NK. Effects of nano fertilizer on yield, yield attributes and economics in tomato (Solanum lycopersicum L.). Int J Curr Microbiol App Sci. 2020;9:2583-91.

Manikandan A, Subramanian KS. Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci. 2016;9(4):1-9.

Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci [Internet]. 2016;7(June2016). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973885483&doi=10.3389%2ffpls.2016.00815&partnerID=40&md5=294ceb415cf1bc7059c48fd552bea3a5

Fadzil NI, Anoam SR, Rosmi MNM, Anuar MFM, Masdor NA. Toxicity Assessment of Colloidal Nanofertilizers Using Zebrafish Embryo Model through Acute Toxicity Assay. Mater Sci Forum. 2022;1055:93-104.

Karamba KI, Yakasai HM. Growth Characterization of Bacillus amyloliquefaciens strain KIK-12 on SDS. J Biochem Microbiol Biotechnol. 2019 Jul 31;7(1):26-30.

Nordin N, Zakaria MR, Halmi MIE, Ariff A, Zawawi RM, Wasoh H. Isolation and screening of high efficiency biosurfactant-producing bacteria Pseudomonas sp. J Biochem Microbiol Biotechnol. 2013 Dec 31;1(1):25-31.

Li G, Zhang Z, Liu H, Hu L. Nanoemulsion-based delivery approaches for nutraceuticals: fabrication, application, characterization, biological fate, potential toxicity and future trends. Food Funct. 2021 Mar 15;12(5):1933-53.

Saharan V. Effect of gibberellic acid combined with saponin on shoot elongation of Asparagus officinalis. Biol Plant. 2010;54(4):740-2.

Kumari S, Choudhary RC, Kumaraswamy R V., Bhagat D, Pal A, Raliya R, et al. Zinc-functionalized thymol nanoemulsion for promoting soybean yield. Plant Physiol Biochem. 2019;145(October):64-74.

Schneider-Orelli O. Practical entomology: an introduction to agricultural and forest entomology. 2nd ed. Aaarau, Germany: H. R. Sauerländer & Co; 1947.

Abdul-Baki AA, Anderson JD. Vigor Determination in Soybean Seed by Multiple Criteria1. Crop Sci. 1973;13(6):cropsci1973.0011183X001300060013x.

Finney D. Probit Analysis. London, U.K.: Cambridge Press; 1971.

Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 2009 May;75(7):850-7.

Parveen A, Mazhari BBZ, Rao S. Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microb Technol. 2016 Dec 1;95:107-11.

Almutairi Z, Alharbi A. Effect of Silver Nanoparticles on Seed Germination of Crop Plants. J Adv Agric. 2015 Mar 3;4:280-5.

Sz?ll?si R, Molnár Á, Kondak S, Kolbert Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants. 2020 Dec;9(12):1745.

Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A. Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol. 2017;8(1).

Khan F, Pandey P, Upadhyay TK. Applications of Nanotechnology-Based Agrochemicals in Food Security and Sustainable Agriculture: An Overview. Agriculture. 2022;12(10):1672.

Faikah Mustafa I, Zobir Hussein M. Synthesis and Technology of Nanoemulsion-Based Pesticide Formulation. 2020;

Abd-Elsalam KA, Khokhlov AR. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl Nanosci Switz. 2015;5(2):255-65.

Surendhiran M, Raja K, Jerlin R, Marimuthu S, Srivignesh S. Nano Emulsion Seed Invigouration for Improved. Int J Agric. 2019;9(3):333-40.

Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep. 2020;10(1):1-16.

de Castro e Silva P, Pereira LAS, de Rezende ÉM, dos Reis MV, Lago AMT, Carvalho GR, et al. Production and efficacy of neem nanoemulsion in the control of Aspergillus flavus and Penicillium citrinum in soybean seeds. Eur J Plant Pathol. 2019;155(4):1105-16.

Pereira ADES, Oliveira HC, Fraceto LF, Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021;11(2):1-29.

Dileep Kumar G, Raja K, Natarajan N, Govindaraju K, Subramanian KS. Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.). Mater Chem Phys. 2020;242.

Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269-77.

Panyuta O, Belava V, Fomaidi S, Kalinichenko O, Volkogon M, Taran N. The Effect of Pre-sowing Seed Treatment with Metal Nanoparticles on the Formation of the Defensive Reaction of Wheat Seedlings Infected with the Eyespot Causal Agent. Nanoscale Res Lett. 2016;11(1):1-5.

Downloads

Published

31.07.2023

How to Cite

Fadzil, N., Rosmi, M. M. ., Wahid, N., Nor, N. M., Karim, M. A., Anuar, M. M., & Masdor, N. . (2023). Determining the Median Lethal Concentration (LC50) and Seedling Growth Effects of MARDI Nano-fertilizer on Rock melon (Cucumis melo). Asian Journal of Plant Biology, 5(1), 43–47. https://doi.org/10.54987/ajpb.v5i1.827

Issue

Section

Articles