Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta

Authors

  • M.I.E. Halmi Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia
  • M.S. Shukor Snoc International Sdn Bhd, Lot 343, Jalan 7/16 Kawasan Perindustrian Nilai 7, Inland Port, 71800, Negeri Sembilan, Malaysia.
  • W.L.W. Johari Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • M.Y. Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, UPM 43400 Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.54987/ajpb.v2i1.81

Abstract

Growth curves can be found in a variety of disciplines including fishery, agriculture, biology and biotechnology. Most living matter grows with successive lag, growth, and asymptotic phases and parameters associated with these phase can be used in predictive biology. In this work we studied the growth kinetics of the algae Dunaliella tertiolecta based on available published work in the literature using several growth models such as modified logistic, modified Gompertz, modified Richards, modified Schnute, Baranyi-Roberts, Von Bertalanffy, Huang and the Buchanan three-phase linear model. Statistical analysis based on RMSE, adjusted R2, Bias Factor (BF), Accuracy Factor (AF), Akaike Information Criterion (AIC) and F-test shows mixed results with the best models implied from the statistical analysis were the Baranyi-Roberts and modified Gompertz model. The Baranyi-Roberts model was chosen to fit the growth profile of the algae under various light intensity based on its mechanistically-inclined properties. The results obtained showed that the µmax rose steadily from 0.317 to 1.069 (day-1) whilst the lag time were negative in values at 10 and 20 lux light intensities and steadily increased to 1.189 days at 60 lux light intensity. The results from this work can be used in the further optimization works of this alga in the future.

References

Akaike, Hirotugu (1974), "A new look at the statistical model identification", IEEE Transactions on Automatic Control 19 (6): 716–723.

Babák, L., P. Šupinová, R. Burdychová. 2012. Growth models of Thermus aquaticus and Thermus scotoductus. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 60 (5), pp. 19-26.

Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3-4), 277-294.

Baranyi, J. (1997). Simple is good as long as it is enough. Food Microbiol., 14, 391-394.

Baranyi, J. (1998). Comparison of stochastic and deterministic concepts of bacterial lag. Journal of Theoretical Biology, 192(3), 403-408.

Baty, F., & Delignette-Muller, M. -. (2004). Estimating the bacterial lag time: Which model, which precision? International Journal of Food Microbiology, 91(3), 261-277.

Buchanan, R. L., Whiting, R. C., & Damert, W. C. (1997). When is simple good enough: A comparison of the gompertz, baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiology, 14(4), 313-326.

Chen M, Mertiri T, Holland T, Basu AS. Optical microplates for high-throughput screening of photosynthesis in lipid-producing algae. Lab Chip. 2012 Oct 21;12(20):3870-4.

Coleman, M. E., Tamplin, M. L., Phillips, J. G., & Marmer, B. S. (2003). Influence of agitation, inoculum density, pH, and strain on the growth parameters of escherichia coli O157:H7 - relevance to risk assessment. International Journal of Food Microbiology, 83(2), 147-160.

De Stefano, L. A., Stepanov, I. I., & Abramson, C. I. (2014). The first order transfer function in the analysis of agrochemical data in honey bees (apis mellifera L.): Proboscis extension reflex (PER) studies. Insects, 5(1), 167-198.

Fujikawa, H., Kai, A., & Morozumi, S. (2004). A new logistic model for escherichia coli growth at constant and dynamic temperatures. Food Microbiology, 21(5), 501-509.

Gibson, A. M., Bratchell, N., & Roberts, T. A. (1987). The effect of sodium chloride and temperature on the rate and extent of growth of clostridium botulinum type A in pasteurized pork slurry. Journal of Applied Bacteriology, 62(6), 479-490.

Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. London 115:513-585.

Huang, L. (2008). Growth kinetics of listeria monocytogenes in broth and beef frankfurters - determination of lag phase duration and exponential growth rate under isothermal conditions. Journal of Food Science, 73(5), E235-E242.

Kivlin, S. N., Emery, S. M., & Rudgers, J. A. (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany, 100(7), 1445-1457.

Lacerda, L. M. C. F., Queiroz, M. I., Furlan, L. T., Lauro, M. J., Modenesi, K., Jacob-Lopes, E., & Franco, T. T. (2011). Improving refinery wastewater for microalgal biomass production and CO2 biofixation: Predictive modeling and simulation. Journal of Petroleum Science and Engineering, 78(3-4), 679-686.

López, S., Prieto, M., Dijkstra, J., Dhanoa, M. S., & France, J. (2004). Statistical evaluation of mathematical models for microbial growth. International Journal of Food Microbiology, 96(3), 289-300.

McKellar, R. C., Lu, X., & Knight, K. P. (2002). Proposal of a novel parameter to describe the influence of pH on the lag phase of listeria monocytogenes. International Journal of Food Microbiology, 73(2-3), 127-135.

Mohamed, M. S., Tan, J. S., Kadkhodaei, S., Mohamad, R., Mokhtar, M. N., & Ariff, A. B. (2014). Kinetics and modeling of microalga Tetraselmis sp. FTC 209 growth with respect to its adaptation toward different trophic conditions. Biochemical Engineering Journal, 88, 30-41.

Motulsky HJ, Christopoulos A. 2003. Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. San Diego, Calif.: GraphPad Software.

Motulsky, H.J., Ransnas, L.A., 1987. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1, 365– 374.

Perni, S; Andrew, PW; Shama, G; (2005) Estimating the maximum growth rate from microbial growth curves: definition is everything. FOOD MICROBIOL , 22 (6), 491-495.

Pin, C., García de Fernando, G. D., Ordóez, J. A., & Baranyi, J. (2002). Analysing the lag-growth rate relationship of yersinia enterocolitica. International Journal of Food Microbiology, 73(2-3), 197-201.

Richards, F. J. 1959. A flexible growth function for empirical use. J. Exp. Bot. 10:290-300.

Ricker W. E. Growth rates and models. In: Hoar W. S., Randall D. J., Brett J. R., editors. Fish Physiology. Vol. 3. New York: Academic Press; 1979. p. 677-743.

Rohatgi, A., WebPlotDigitizer. http://arohatgi.info/ WebPlotDigitizer/app/ (accessed June 2, 2014).

Ross, T. 1996. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol., 81 (1996), pp. 501–508.

Schnute, J. 1981. A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 38:1128-1140.

Tevatia, R., Demirel, Y., & Blum, P. (2012). Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresource Technology, 119, 419-424.

Van Impe, J. F., Poschet, F., Geeraerd, A. H., & Vereecken, K. M. (2005). Towards a novel class of predictive microbial growth models. International Journal of Food Microbiology, 100(1-3), 97-105.

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van't Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875-1881.

Downloads

Published

02.07.2014

How to Cite

Halmi, M., Shukor, M., Johari, W., & Shukor, M. (2014). Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian Journal of Plant Biology, 2(1), 1–6. https://doi.org/10.54987/ajpb.v2i1.81

Issue

Section

Articles