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INTRODUCTION 

 

Growth curves are found in a wide range of disciplines, such as 

fishery research, crop science, and biology. Most living matter 

grows with successive lag, growth, and asymptotic phases; 

examples of quantities that follow such growth curves are the 

length or mass of a human, a potato, or a fish and the extent of a 

population of fish or microorganisms. One of the most important 

results from curve fitting in growth curve model is the ability to 

use a growth model that have a strong underlying mechanistic 

function based on sound theoretical knowledge of the system. One 

of the best of such model is the Michaelis-Menten kinetics that 

models the effect substrate on the initial enzyme activity of the 

enzyme, substrate composition, temperature, light, pH, and 

genetic. 

 

Algae growth often shows a phase in which the specific growth 

rate starts at a value of zero and then accelerates to a maximal 

value (µmax) in a certain period of time, resulting in a lag time (λ). 

In addition, growth curves contain a final phase in which  

 

 

 

the rate decreases and finally reaches zero, so that an asymptote 

(A) is reached. Usually these growth rate changes result in a                        

sigmoidal curve, with a lag phase just after t = 0 followed by an 

exponential phase and then by a stationary phase.  

 

The sigmoidal curve can be fitted by different mathematical 

functions, such as the Logistic [1,2], Gompertz [2,3], Richards 

[2,4], Schnute [2,5], Baranyi-Roberts [6] and Von Bertalanffy 

[7,8], Buchanan three-phase [9] and more recently Huang models 

[10]. Apart from demonstrating predictive ability and internal 

consistency, which is a must, the usefulness of a model should 

also be judged by its mathematical simplicity, flexibility, the 

number of its adjustable parameters and, where appropriate, 

whether they have intuitive meaning. The objective of this work is 

to evaluate similarities and differences between the models using 

published available data that lacks modeling and to deal with the 

question of which model(s) can be used, on the basis of statistical 

reasoning. This should give new data and results that could spurn 
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The third generation biofuels such as algal biodiesel is the future potential source of renewable energy. A 

recent develpoment of a drop-based microfluidics device platform to investigate cellular growth kinetics of 

single and few cells of Chlorella vulgaris shows promising results for miniaturization of biodiesel screening. 

The results showed the typical asymmetric sigmoidal growth pattern. Since there exists a variety of models 

for describing the growth profile of microorganism such as logistic, Gompertz, Richards, Schnute, Baranyi-

Roberts, Von Bertalanffy, Buchanan three-phase and more recently Huang models, the growth curves 

exhibit under such conditions would be an excellent study for finding the best model. The Buchanan three-

phase model was chosen as the best model based on statistical tests such as root-mean-square error (RMSE), 

adjusted coefficient of determination (R2), bias factor (BF), accuracy factor (AF), corrected AICc (Akaike 

Information Criterion) and F-test. Parameters obtained from the growth fitting exercise were maximum 

specific growth rate (µmax), lag time (λ) and maximal number of cells achieved per droplet (Ymax) with the 

values of 1.301 (day-1), 1.861 (day) and 77 (no of cells/droplet), respectively. The parameters obtained from 

fitting the algae growth curve using this model can be used for further modeling and optimization exercises 

for identifying key controlling parameters of the microfluidic devices. 
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further information and improvement in the works already done 

by researchers. 

 

 
Table 1. Growth models used in this study. 

 
Note: 

a= bacterial lower asymptote; 

µmax= maximum specific growth rate; 

v= affects near which asymptote maximum growth occurs. 

λ=lag time 

ymax= bacterial upper asymptote; 

e = exponent (2.718281828) 

t = sampling time 

α,β, k = curve fitting parameters 

h0 = a dimensionless parameter quantifying the initial physiological state of the cells. the lag time 

(day-1) can be calculated as h0=µMAX 

 

MATERIAL AND METHODS  
 

Acquisition of Data 

 

In order to process the data, the graph from Figure 6A showing 

Chlorella vulgaris growth profile starting from one cell per 

droplet [11] were scanned and electronically processed using 

WebPlotDigitizer 2.5 [12] which helps to digitize scanned plots 

into table of data with good enough precision [13,14]. Data were 

then replotted (Fig. 1). 

 

Fitting of the Data 

 

Growth data will be fitted nonlinearly using nonlinear regression 

software (CurveExpert Professional software, Version 1.6) that 

uses the Marquardt algorithm. This algorithm minimizes the sums 

of square of residuals between the predicted and experimental 

values. The program can be used in the manual mode or automatic 

mode where it calculates starting values by searching for the 

steepest ascent of the curve normally using four datum points to 

estimate the µmax. The intersection of this line with the x axis is 

the estimation value of the lag time or λ while the final datum 

point is the estimation of the asymptote (A). The Huang’s model 

needs to be solved numerically as it is a differential equation. The 

differential equation was solved numerically using the Runge-

Kutta method. A differential equation solver (ode45) in MATLAB 

(Version 7.10.0499, The MathWorks, Inc., Natick, MA) was used 

to solve this equation. 

 

Statistical Analysis 

 

To decide whether there is a statistically substantial difference 

between models with different number of parameters, in terms of 

the quality of fit to the same experimental data was statistically 

assessed through various methods such as the root-mean-square 

error (RMSE), adjusted coefficient of determination (R2), bias 

factor (BF), accuracy factor (AF), corrected AICc (Akaike 

Information Criterion) and F-test [15]. 

 

The RMSE was calculated according to Eq. (2), where 

Pdi are the values predicted by the model and Obi are the 

experimental  data, n is the number of experimental data, and p is 

the number of parameters of the assessed model. It is expected 

that the model with the smaller number of parameters will give a 

smaller RMSE values.  
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In linear regression models the coefficient of determination or R2 

is used to assess the quality of fit of a model. However, in 

nonlinear regression where difference in the number of parameters 

between one model to another is normal, the adoption of the 

method does not readily provides comparable analysis. Hence an 

adjusted R2 is used to calculate the quality of nonlinear models 

according to the formula where RMS is Residual Mean Square 

and
2

ys
is the total variance of the y-variable.  
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The Akaike information criterion (AIC) provides a means for 

model selection through measuring the relative quality of a given 

statistical model for a given set of experimental data [16].  

 

AIC handles the trade-off relating to the goodness of fit of the 

model as well as the complexity of the model. It is actually 

established on information theory. The method provides a relative 

approximation of the information lost for each time a given model 

is utilized to represent the process that creates the information or 

data. For an output of a set of predicted model, the most preferred 

model would be the model showing the minimum value for AIC. 

Model n Equation 
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This value is often a negative value, with for example; an AICc 

value of -10 more preferred than the one with -1. The equation 

incorporates number of parameters penalty, the more the 

parameters, the less preferred the output or the higher the AIC 

value. Hence, AIC not merely rewards goodness of fit, but in 

addition does not encourage using more complicated model 

(overfitting) for fitting experimental data. Since the data in this 

work is small compared to the number of parameter used a 

corrected version of AIC, the Akaike information criterion (AIC) 

with correction or AICc is used instead. The AICc is calculated 

for each data set for each model according to the following 

equation; 
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Where n is the number of data points and p is the number of 

parameters of the model. The method takes into account the 

change in goodness-of-fit and the difference in number of 

parameters between two models. For each data set, the model with 

the smallest AICc value is highly likely correct [15]. 

 

The F-test is a statistic test used to find the most 

significant model between available predicted curve-fitting 

models. The analysis procedure includes selecting the model with 

the smallest RSS among all the models with the same or different 

number of fitting parameters followed by comparing the relative 

value of the F-ratio. In the event the F-ratio of the two models 

surpasses the upper quartile, the better complicated model is 

accepted as statistically significant [15]. Equation 5 is for models 

with same number of parameters while Equation 6 is for models 

with different number of parameters. 

 

Accuracy Factor (AF) and Bias Factor (BF) to test for 

the goodness-of-fit of the models as suggested by Ross [17] were 

also used.  The Bias Factor equal to1 indicate a perfect match 

between predicted and observed values. For microbial growth 

curves or degradation studies, a bias factor with values < 1 

indicates a fail-dangerous model while a bias factor with values > 

1indicates a fail-safe model. The Accuracy Factor is always ≥ 1, 

and higher AF values indicate less precise prediction. 
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RESULTS AND DISCUSSION 

 

Eight different growth models (Table 1) were used in this study to 

match the experimental data. The resultant fitting shows visually 

acceptable fitting (Fig. 2). Buchanan three-phase, Baranyi-Roberts 

and Huang gave the best fitting based on statistical test with 

similar values for all statistical tests with the exception of the 

AICc test where the Buchanan model gave the best results of the 

three and hence was chosen as the best model. The poorest 

performance was Von Bertalanffy with the lowest score for all 

statistical tests (Table 2). The Buchanan three-phase model 

incidentally gave the most significant results as the more accurate 

model based on the F-test results in comparison with each of the 

models tested. 
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Figure 2. Growth curves of Chlorella vulgaris fitted by various growth 

models available in the literature. The optical density was transformed into 

natural logarithm. 

 
Table 2. Statistical analysis of the various fitting models. 

 
Model 

 

p 

 

RMSE 

 

Ra2 

 

AICc 

 

BF 

 

AF 

 

Buchanan 3 0.00425 0.999 -63.791 1.00 1.00 

Baranyi-Roberts 4 0.00475 0.999 -43.125 1.00 1.00 

Huang 4 0.00475 0.999 -43.125 1.00 1.00 

Modified 

Gompertz 3 0.06673 0.998 -19.739 1.01 1.02 

Modified Schnute 4 0.07424 0.997 0.848 1.01 1.02 

Modified Logistic 3 0.11254 0.995 -11.377 1.09 1.11 

Von Bertalanffy 3 0.38741 0.944 8.401 1.29 1.35 

Modified Richard 4 0.07463 0.997 0.931 1.01 1.02 

Note: 

p  no of parameters 

Ra2 Adjusted Coefficient of determination 

BF  Bias factor 

AF  Accuracy factor 

 

The choice of the Buchanan as the best model is apt since the 

model is the simplest amongst the eight and it also has three-

parameter giving it  a higher degrees of freedom, which can be 

important when a growth curve with a small number of measured 

points is used. In addition all three parameters have biological 

meaning due to the highly mechanistic property if the model. The 

Buchanan three-phase models have been successfully used to 
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model growth of bacteria bacteria [18–23], algae [24] and worm 

[25]. 

 

Parameters obtained from the growth fitting exercise were 

maximum specific growth rate (µmax), lag time (λ) and maximal 

number of cells achieved per droplet (Ymax) with the values of 

1.301 (day-1), 1.861 (day) and 77 (no of cells/droplet), 

respectively (Table 3). 

 
Table 3. Fitted growth parameters according to the Buchanan three-phase 

model. 

 
Parameters 

 

Fitted values 

µmax (day-1) 

 

1.301 

Lag time (λ) (day) 

 

1.861 

Ymax (ln no of cells/droplet) 

 

4.347 

 

The parameters determined using the Buchanan model gave a 

calculated µmax with a slightly lower than the value reported by 

Dewan et al. [11] of 1.52 (day-1) in the original publication. Other 

parameters such as lag time, Ymax and A were not available from 

the original publication. The results obtained in this work would 

be useful in further works such as secondary modeling of the 

algae for the effects of pH, temperature and substrates on the 

specific growth rate. There is almost no report on the use of the 

Buchanan model for fitting algae growth curves in the literature 

for comparative purposes. The most cited growth model for fitting 

growth curves of algae is the Gompertz model [26–30]. 

 

In conclusion, several of the sigmoidal functions evaluated can be 

used as primary level microbial growth models with an acceptable 

degree of goodness-of-fit. However, the best model was the 

simpler Buchanan three phase model. The parameters obtained 

from fitting the algae growth curve using this model can bed used 

for further modeling and optimization exercises for identifying 

key controlling parameters of the microfluidic devise. 
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