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INTRODUCTION 

Algae, similar to microbial growth often shows growth with 

several phases where the specific growth rate starts at the value of 

zero. This is followed by acceleration to a maximal value (µmax) 

for a given period of time, resulting in what is called the lag time 

(λ). Finally the growth curves exhibit a final phase where the rate 

decreases and eventually reaches zero or an asymptote (A). The 

growth phases usually resulted in a sigmoidal curve (Fig. 1). The 

lag phase just after t = 0 is followed by the exponential- and 

finally a stationary phase. Another valuable parameter of the 

growth curve asides from the lag period and the asymptotic value 

is the maximum specific growth rate (µmax). Usually when the 

logarithm of the bacterial or algal number is used the slope of the 

line when the organisms grow exponentially is equal to µmax. This 

value is important for the development of secondary models  

 

 

 

 

 

where the effect of environmental conditions such as temperature, 

pH and water activity on the growth rate of organism is modelled  

[1]. In a large number of publications, this parameter is often 

estimated manually by deciding subjectively  

the part of the curve that is nearly linear and then the slope of this 

curve section is then determined usually by linear regression. A 

better method is to describe the entire set of data with a nonlinear 

regression growth model and then estimate µ max, λ and A from 

the model. In addition many published works produced the growth 

curve but did not attempt any further to fitting the data to available 

models [1]. 

 

         The sigmoidal curve can be fitted by different mathematical 

functions, such as Logistic [1,2], Gompertz [1,3], Richards [1,4], 

Schnute [1,5], Baranyi-Roberts [6] and Von Bertalanffy [7,8], 

Buchanan three-phase [9] and more recently Huang models [10] 

 

        
 

 

 

 

 

ABSTRACT HISTORY 

Received: 27 January 2014 

Received in revised form: 18 Feruary2014 

Accepted: 19 Februari 2014 

Available online: 20th July 2014 

 

KEYWORD 

Dunaliella tertiolecta  

Growth models 

Statistical analysis 

Baranyi-Roberts model 

 

 

Growth curves can be found in a variety of disciplines including fishery, agriculture, biology and 

biotechnology. Most living matter grows with successive lag, growth, and asymptotic phases and parameters 

associated with these phase can be used in predictive biology. In this work we studied the growth kinetics of 

the algae Dunaliella tertiolecta based on available published work in the literature using several growth 

models such as modified logistic, modified Gompertz, modified Richards, modified Schnute, Baranyi-

Roberts, Von Bertalanffy, Huang and the Buchanan three-phase linear model. Statistical analysis based on 

RMSE, adjusted R2, Bias Factor (BF), Accuracy Factor (AF), Akaike Information Criterion (AIC) and F-test 

shows mixed results with the best models implied from the statistical analysis were the Baranyi-Roberts and 

modified Gompertz model. The Baranyi-Roberts model was chosen to fit the growth profile of the algae 

under various light intensity based on its mechanistically-inclined properties. The results obtained showed 

that the µmax rose steadily from 0.317 to 1.069 (day-1) whilst the lag time were negative in values at 10 and 

20 lux light intensities and steadily increased to 1.189 days at 60 lux light intensity. The results from this 

work can be used in the further optimization works of this alga in the future. 
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(Table 1). Apart from demonstrating predictive ability and internal 

consistency, which is a must, the usefulness of a model should 

also be judged by its mathematical simplicity, flexibility, the 

number of its adjustable parameters and, where appropriate, 

whether they have intuitive meaning. The objective of this work is 

to evaluate similarities and differences between the models using 

published available data that lacks modelling and to deal with the 

question of which model(s) can be used, on the basis of statistical 

reasoning. This should give new data and results that could spurn 

further information and improvement in the works already done 

by researchers. 

 
Table 1. Growth models used in this study. 

 

 

Note: 

a= bacterial lower asymptote; 

µmax= maximum specific growth rate; 

v= affects near which asymptote maximum growth occurs. 

λ=lag time 
ymax= bacterial upper asymptote; 

e = exponent (2.718281828) 

t = sampling time 

α,β, k = curve fitting parameters 

h0 = a dimensionless parameter quantifying the initial physiological state of the cells. the lag time 

(day-1) can be calculated as h0=µMAX 

 

 

 

 

 

 

 

 

 

 

 

MATERIALS AND METHODOLOGY 

 

Acquisition of Data 

 

In order to process the data, the graphs were scanned and 

electronically processed using WebPlotDigitizer 2.5 [11] which 

helps to digitize scanned plots into table of data with good enough 

precision [12,13]. Data were acquired from the works of Chen et 

al. [14] from Figure 4 A which shows the effect of different light 

intensity on the growth of Dunaliella tertiolecta measured 

optically over several days and then replotted (Fig. 1). 
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Figure 1: The growth of Dunaliella tertiolecta measured as optical density 

on a microplate under different settings light intensities. Replotted from 

Chen et al. [14]. 

Fitting of the data 

 

Growth data will be fitted nonlinearly using nonlinear regression 

software (CurveExpert Professional software, Version 1.6) that 

uses the Marquardt algorithm. This algorithm minimizes the sums 

of square of residuals between the predicted and experimental 

values. The program can be used in the manual mode or automatic 

mode where it calculates starting values by searching for the 

steepest ascent of the curve normally using four datum points to 

estimate the µmax. The intersection of this line with the x axis is the 

estimation value of the lag time or λ while the final datum point is 

the estimation of the asymptote (A). The Huang’s model needs to 

be solved numerically as it is a differential equation. The 

differential equation was solved numerically using the Runge-

Kutta method. A differential equation solver (ode45) in MATLAB 

(Version 7.10.0499, The MathWorks, Inc., Natick, MA) was used 

to solve this equation. 

 

Statistical analysis 

 

To decide whether there is a statistically substantial difference 

between models with different number of parameters, in terms of 

the quality of fit to the same experimental data was statistically 

assessed through various methods such as the root-mean-square 

error (RMSE), adjusted coefficient of determination (R2), bias 

factor (BF), accuracy factor (AF), corrected AICc (Akaike 

Information Criterion) and F-test [15]. 
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The RMSE was calculated according to Eq. (2), where Pdi are the 

values predicted by the model and Obi are the experimental  data, 

n is the number of experimental data, and p is the number of 

parameters of the assessed model. It is expected that the model 

with the smaller number of parameters will give a smaller RMSE 

values.  
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In linear regression models the coefficient of determination or R2 

is used to assess the quality of fit of a model. However, in 

nonlinear regression where difference in the number of parameters 

between one models to another is normal, the adoption of the 

method does not readily provides comparable analysis. Hence an 

adjusted R2 is used to calculate the quality of nonlinear models 

according to the formula where RMS is Residual Mean Square 

and 2

ys is the total variance of the y-variable.  
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The Akaike information criterion (AIC) provides a means for 

model selection through measuring the relative quality of a given 

statistical model for a given set of experimental data [16]. The 

equation incorporates number of parameters penalty, the more the 

parameters, the less preferred the output or the higher the AIC 

value. Hence, AIC not merely rewards goodness of fit, but in 

addition does not encourage using more complicated model 

(overfitting) for fitting experimental data. Since the data in this 

work is small compared to the number of parameter used a 

corrected version of AIC, the Akaike information criterion (AIC) 

with correction or AICc is used instead. The AICc is calculated 

for each data set for each model according to the following 

equation; 
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Where n is the number of data points and p is the number of 

parameters of the model. The method takes into account the 

change in goodness-of-fit and the difference in number of 

parameters between two models. For each data set, the model with 

the smallest AICc value is highly likely correct. 

 

The F-test is a statistic test used to find the most significant model 

between available predicted curve-fitting models. The analysis 

procedure includes selecting the model with the smallest RSS 

among all the models with the same or different number of fitting 

parameters followed by comparing the relative value of the F-

ratio. In the event the F-ratio of the two models surpasses the 

upper quartile, the better complicated model is accepted as 

statistically significant [15]. Equation 5 is for models with same 

number of parameters while Equation 6 is for models with 

different number of parameters; 
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Accuracy Factor (AF) and Bias Factor (BF) to test for the 

goodness-of-fit of the models as suggested by Ross [17] were also 

used.  The Bias Factor equal to1 indicate a perfect match between 

predicted and observed values. For microbial growth curves or 

degradation studies, a bias factor with values < 1 indicates a fail-

dangerous model while a bias factor with values > 1indicates a 

fail-safe model. The Accuracy Factor is always ≥ 1, and higher AF 

values indicate less precise prediction. 
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RESULTS AND DISCUSSION 

One of the most important results from curve fitting in growth 

curve model is the ability to use a growth model that have a strong 

underlying mechanistic function based on sound theoretical 

knowledge of the system. One of the best of such model is the 

Michaelis-Menten kinetics that models the effect substrate on the 

initial enzyme activity of the enzyme. In order to find the best 

model, eight different growth models were used in this study to 

match the experimental data. The resultant fitting shows visually 

acceptable fitting (Fig. 2). The statistical analysis results (Table 2) 

indicated mixed results.  
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Figure 2: Growth curves of Dunaliella tertiolecta fitted by various growth 

models available in the literature. The optical density was transformed into 

natural logarithm. 
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Table 2. Statistical analysis of the various fitting models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical analysis based on the AIC, RMSE and adjusted R2 

values show that the Baranyi-Roberts was the better model whilst 

the Bias Factor (BF) and Accuracy Factor (AF) results indicate 

that the Huang model was a better fit. The Von Bertalanffy model 

was the least acceptable model according to the AIC, RMSE and 

adjusted R2 values whilst the least acceptable model according to 

the AF and BF values were the modified Richard and Buchanan 

models. The F-test ratio showed mixed results with the Baranyi 

Robert model was as good as the modified Gompertz model in 

fitting the growth results.  

 

However, the Baranyi-Roberts model was reputed to be more 

mechanistic in properties than the modified Gompertz model, with 

its parameters can be given a more biological meaning than the 

modified Gompertz model. The Baranyi-Roberts model was 

chosen to fit the growth profile of the algae under various light 

intensity based on its mechanistically-inclined properties 

compared to the modified Gompertz model despite having 4 

parameters to be fitted (Table 2). A three-parameter model is 

recommended over a four-parameter model because of the 

simplicity of the model, it is easier to use and solution is more 

stable since less correlated parameters are involved. In addition, it 

is imperative that parameters do have biological meanings, and 

this is often not the case in models with more than 3 parameters 

with the extra parameters functions as curve fitting parameters and 

can be extremely large under certain circumstances. Future models 

could impose a penalty on these huge extra curve fitting 

parameters where numbers larger than 10,000 are often reported. 

Furthermore, model with a lower number of parameters have more 

degrees of freedom and can give more reliability in statistical tests 

such as RMSE and AICc especially when smaller number of 

experimental data is available. One suggested way to increase the 

statistical significant of a mechanistic model with four parameter 

over a non-mechanistic three-parameter model is to increase the 

number of sets of data [1].  

 

In the model proposed by Baranyi et al. [18] the variation of the 

cell population (x) with time is described by a first-order 

differential equation [19]. 
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This model can be rewritten in its generic form [6] 
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The α(t) function of Baranyi and Roberts [6] is based on the  

Michaelis–Menten ‘Bottle-Neck’ kinetic assumption; namely that 

the growth is inhibited by an intracellular substance p(t) during the 

lag phase. The physiological state of the inoculums is represented 

by the quotient q0. The model assumes that the ratio between p(t) 

and its Michaelis–Menten constant grows exponentially from an 

initial value q0, at a constant vs specific rate. The α(t) increases 

monotonously with the limits 0≤α≤1 and limt→∞ α(t)=1 as 

follows; 
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The end-of-growth inhibition is represented as the f(t) function in 

Eq. (13). It decreases monotonically with f(0) = 1 and limt→∞ f(t) = 

0. Most dynamics models describe f(t) by a logistic inhibition 

function as shown below; 
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Baranyi and his co-workers were able to derive solutions to this 

differential equation under certain conditions, e.g. fixed 

temperatures (isothermal). Initially this was done using six 

parameters; 
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where; 
A is the initial cell concentration and ymax is the asymptomatic cell 

concentration in ln (c.f.u./ml), m is the curvature parameter to 

characterize the transition from the exponential phase, v is the 

curvature parameter to characterize the transition to the 

exponential phase and ho is a dimensionless parameter quantifying 

the initial physiological state of the cells. The lag time λ(h) can be 

calculated as ho/µmax. µmax is the maximum specific growth rate 

(1/h). For the curvature parameters, Baranyi [20] suggests v= µmax 

and m=1, values that are also adopted in this paper. This decreases 

the number of parameters by two, so the model has four 

parameters: µmax; h0; a and ymax (eqn. 15).  
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Model n 

 

AIC 

 

 

RMSE 

 

MSE 

 

R2 

 
Adjusted 

R2 
Bias 

Factor 

Accuracy 

Factor 

 

Huang 4 -48.1 0.093 0.009 0.992 0.988 0.995 1.005 

Baranyi-

Robert 4 

 

-52.0 

 

0.082 

 

0.007 

 

0.993 

 

0.990 

 

0.988 

 

1.012 

 

Modified 

Gompertz 3 

 

-50.7 

 

0.099 

 

0.010 

 

0.989 

 

0.985 

 

0.980 

 

1.021 

 

Buchanan 
3 -53.5 0.088 0.008 0.991 0.989 0.951 1.052 

Modified 

Logistic 3 -48.2 0.108 0.012 0.986 0.981 0.957 1.045 

Modified 

Richard 4 -45.1 0.104 0.011 0.989 0.983 0.951 1.052 

Modified 

Schnute 4 -37.3 0.140 0.020 0.979 0.969 0.974 1.026 

Von 

Bertalanffy 3 -38.4 0.158 0.025 0.970 0.960 0.975 1.025 



Asian Journal of Plant Biology, 2014, Vol 2, No 1, 1-6 

5 

 

Baranyi and Roberts [6] noted that h0 can be thought of as a 

suitability indicator of the micro-organism population to the actual 

environment. If the experimental procedure is standardized, this 

suitability indicator will be more or less constant which is 

equivalent to the assumption that the lag time λ and µmax are 

inversely proportional. 

 

Using the Baranyi-Robert model as a basis, the effect of light 

intensities to the growth of the algae was then fitted (Fig. 3). The 

resultant µmax for each light intensities rose steadily from 0.317 to 

1.069 (day-1) whilst the lag time were negative in values at 10 and 

20 lux light intensities and steadily increased to 1.189 days at 60 

lux (Table 3). 
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Figure 3. Growth curves of Dunaliella tertiolecta under various light 

intensities measured over time fitted with the Baranyi-Roberts model. 

 

Table 3. Fitted growth parameters according to the Baranyi-Roberts 

model. 

 

 

 

 

 

 

 

 

 

 

 

The Baranyi and Roberts model is capable of producing a good fit 

for microbial growth curves, i.e. Bacillus spp., Brochothrix 

thermosphacta, Clostridium spp., Escherichia coli O157:H7, 

Listeria monocytogenes, Salmonella Typhimurium, 

Staphylococcus spp. and Yersinia enterocolitica [22–26]. The 

model is popular due to several reasons: first, it shows a good 

fitting capacity; secondly, it is applicable under dynamic 

environmental conditions, and thirdly, most of the model 

parameters are biologically interpretable [26–28]. The Baranyi-

Roberts model has been successfully used to model algae growth 

as shown in several works on algae [29–31]. 

 

In conclusion, the various models used to fit the growth of the 

algae have shown that almost all of them could be used to fit the 

growth profile with the Baranyi-Roberts and the modified 

Gompertz model becoming two good candidates as assessed 

statistically. The mechanistically-inclined Baranyi-Roberts model 

was chosen to model the growth of the algae showing an 

increasing maximum specific growth rate and lag times as the 

light intensity was increased from 10 to 60 lux units. The results 

from this work can be used in the further optimization works of 

the algae. 
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